Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 1): 129965, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325686

RESUMO

The different modified cassava starches (MCS) obtained by either single or dual modifications with cross-linking (CL) and octenylsuccinylation (OS), including 2%CL, 3%OS, 2%CL-3%OS, and 3%OS-2%CL, were used to stabilize soybean oil-in-water emulsions (oil content 10% (w/w)) at a concentration of 4.5% (w/w) compared to native cassava starch (NCS) and their physical properties and in-vitro gastrointestinal digestion were investigated. The emulsions stabilized with NCS and 2%CL-MCS had larger oil droplet sizes, higher viscosity, and lower negative charge than the emulsions stabilized by single- or dual-MCS with 3%OS. All MCS-stabilized emulsions showed a higher emulsion stability against creaming than the NCS-stabilized emulsion. Under a simulated gastrointestinal tract, all 3%OS-MCS promoted droplet flocculation, while the less ionic NCS and the 2%CL-MCS showed a decrease in droplet size after passing through the mouth and stomach stages. The lipid digestion rate of emulsions stabilized with different MCS and NCS followed the following order: 3%OS >2%CL-3%OS > 3%OS-2%CL > 2%CL > NCS. The NCS- and 2%CL-stabilized emulsions had a lower lipid digestion rate, possibly due to the larger droplet sizes and higher viscosity of the initial emulsions, which delays access of lipase enzymes to lipid droplet surfaces, compared to all 3%OS-MCS-stabilized emulsions.


Assuntos
Manihot , Emulsões , Óleo de Soja , Digestão , Água , Tamanho da Partícula
2.
Polymers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257009

RESUMO

The effects of palm oil (PO) and coconut oil (CO) additions on the physicochemical properties and in vitro starch digestibility of extruded pineapple stem starch (PSS) were studied. The native PSS was adjusted to 15% moisture and blended with PO or CO in amounts of 5 and 10% (w/w of starch), while the control sample without added oil was adjusted to 25% moisture before being extruded with a twin-screw extruder at a maximum barrel temperature of 140 °C. Due to the lubricating effect, the added oils reduced the expansion ratio of the extrudates, which led to an increase in cell wall thickness, bulk density, hardness, and water adsorption index, but to a reduction in the water solubility index, especially with 10% oils. PO had a greater impact on the physicochemical changes in the extrudates than CO. Surprisingly, no amylose-lipid complex was observed in the extrudates with added oil, as shown by XRD, DSC, and FTIR results. The phenolic compounds contained in PSS remained in all extrudates, which could affect the formation of the amylose-lipid complex during extrusion. The addition of 5% oil had no effect on the digestibility of the starch compared to the control extrudates, while the 10% oils, both PO and CO, reduced the rapidly digestible starch content but significantly increased the resistant starch content of the extruded PSS.

3.
Foods ; 12(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38002230

RESUMO

Butterfly pea petal extract (BPE)-loaded water-in-oil-in-water (W/O/W) emulsions were fabricated using nanocrystalline cellulose (NCC) as a hydrophilic stabilizer and polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier. The impact of different concentrations of NCC and PGPR in different phase proportions on the emulsion formation, rheology, and stability of an anthocyanin-loaded (pH ≈ 7.0) emulsion was investigated. The mean droplet size of the emulsions increased as the NCC concentration increased, while color intensity (greenness) decreased as the PGPR and NCC concentrations increased. A microscopic examination confirmed that the NCC nanoparticles stabilized the inner W1/O phase, whereas the excess concentration of non-adsorbing NCC nanoparticles was suspended in the continuous aqueous phase. The rheological results showed that robust emulsion networks were formed when the NCC concentration increased. A network structure between the droplets and the development of the NCC network during the continuous phase were attributed to a gel-like behavior. Over the course of seven days, the emulsions with a higher proportion of NCC remained stable, as in samples 3%P-%N, 5%P-2%N, and 5%P@1%N, the total anthocyanin content decreased from 89.83% to 76.49%, 89.40% to 79.65, and 86.63% to 71.40%, respectively. These findings have significant implications for the accurate formulation of particle-stabilized double emulsions for anthocyanin delivery with higher stability.

4.
Polymers (Basel) ; 15(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896331

RESUMO

The effect of pulsed electric field (PEF) treatment depends mainly on the electric field strength and treatment time. In this study, wheat flour-water suspensions were treated with PEF at an electric field strength of 3 kV/cm for 0 to 1400 pulses to obtain a specific energy input of 0 to 656 kJ/kg. The effect of PEF on the removal or unfolding of proteins from the starch surface, digestibility, starch granule structure, and physicochemical properties of wheat flour was studied. The removal of proteins from the surface and the damage to the internal structure of wheat starch granules after PEF treatment was detected by confocal laser scanning microscopy (CLSM) and FTIR. The damage of the PEF-treated wheat starch granules was observed by scanning electron microscopy (SEM). From CLSM results, penetration of dextran (Mw 10,000 Da) into starch granules of wheat flour was dependent on the energy input of PEF. The high the energy input showed the intense penetration of the biopolymer. The benefits of the accessibility of biopolymer in starch granules are to increase enzyme digestion, especially rapidly digestible starch (RDS). The RDS of wheat flour treated with PEF at 656 kJ/kg was 41.72%, whereas the RDS of wheat flour control was 27.59%.

5.
Foods ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238846

RESUMO

In this study, the physicochemical, rheological, in vitro starch digestibility, and emulsifying properties of starch extracted from pineapple stem agricultural waste were investigated in comparison with commercial cassava, corn, and rice starches. Pineapple stem starch had the highest amylose content (30.82%), which contributed to the highest pasting temperature (90.22 °C) and the lowest paste viscosity. It had the highest gelatinization temperatures, gelatinization enthalpy, and retrogradation. Pineapple stem starch gel had the lowest freeze-thaw stability, as evidenced by the highest syneresis value of 53.39% after five freeze-thaw cycles. Steady flow tests showed that pineapple stem starch gel (6%, w/w) exhibited the lowest consistency coefficient (K) and the highest flow behavior index (n), while dynamic viscoelastic measurements gave the gel strength in the following order: rice > corn > pineapple stem > cassava starch gel. Interestingly, pineapple stem starch provided the highest slowly digestible starch (SDS) (48.84%) and resistant starch (RS) (15.77%) contents compared to other starches. The oil-in-water (O/W) emulsion stabilized with gelatinized pineapple stem starch exhibited higher emulsion stability than that stabilized with gelatinized cassava starch. Pineapple stem starch could therefore be used as a promising source of nutritional SDS and RS, and as an emulsion stabilizer for food applications.

6.
Carbohydr Polym ; 307: 120630, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781281

RESUMO

Proso millet flour (PMF) and starch (PMS) were subjected to heat-moisture treatment (HMT) at 25 % moisture content and 110 °C for 4 h. The effects of HMT on physicochemical and structural properties and in vitro digestibility of PMF and PMS were analyzed. After HMT, SEM showed aggregation and damage to the surface of starch granules, while CLSM showed proteins wrapped around the granules. The amylopectin chain length distribution (CLD) remained unchanged in PMF and PMS after HMT, indicating intact covalent bonds between glucose units. HMT decreased the swelling power, solubility, viscosity of the paste, and gelatinization enthalpy and increased the pasting temperature and gelatinization temperature of PMF and PMS. HMT changed the XRD pattern of PMF from A to A + V type starches, whereas that of PMS remained unchanged. FTIR study showed an increase in the degree of short-range molecular order of PMF and PMS after HMT. In vitro digestibility evaluation showed that the rapidly (RDS) and slowly digestible starch (SDS) contents of PMF and PMS increased, whereas the resistant starch (RS) content decreased after HMT. HMT flour and starch have suitable properties for use in a wide range of food products, from canned to frozen, as well as non-food products.


Assuntos
Panicum , Amido , Amido/química , Farinha , Panicum/metabolismo , Temperatura Alta , Amilopectina
7.
Food Res Int ; 163: 112304, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596204

RESUMO

Native cassava starch (NCS) was chemically modified by cross-linking (CL), octenylsuccinylation (OS), CL followed by OS, and OS followed by CL. The modified cassava starches (MCS) were determined for physicochemical, in-vitro digestibility, and emulsifying properties. For the dual modifications, the functional groups introduced in the first modification were partially replaced by the ones that introduced in the second modification. The X-ray diffraction pattern and relative crystallinity of cassava starch did not change by both modifications, indicating that both reactions occurred predominantly in amorphous regions as well as on the surface of starch granules and did not alter the crystalline pattern in the granules. The physicochemical and emulsifying properties of the dual MCS were predominantly affected by the functional groups introduced in the second modification. For the in-vitro digestibility, the dual MCS exhibited the highest resistant starch content of 19.48-22.00% in comparison with the NCS (6.05%) and the single MCS (10.76-14.49%), possibly due to a synergistic effect of the functional groups introduced in the first and second modifications.


Assuntos
Manihot , Amido , Amido/química , Fenômenos Químicos , Manihot/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA