Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37626956

RESUMO

Signs and symptoms involving multiple organ systems which persist for weeks or months to years after the initial SARS-CoV-2 infection (also known as PASC or long COVID) are common complications of individuals with COVID-19. We recently reported pathophysiological changes in various organs post-acute infection of mice with mouse hepatitis virus-1 (MHV-1, a coronavirus) (7 days) and after long-term post-infection (12 months). One of the organs severely affected in this animal model is the kidney, which correlated well with human studies showing kidney injury post-SARS-CoV-2 infection. Our long-term post-infection pathological observation in kidneys includes the development of edema and inflammation of the renal parenchyma, severe acute tubular necrosis, and infiltration of macrophages and lymphocytes, in addition to changes observed in both acute and long-term post-infection, which include tubular epithelial cell degenerative changes, peritubular vessel congestion, proximal and distal tubular necrosis, hemorrhage in the interstitial tissue, and vacuolation of renal tubules. These findings strongly suggest the possible development of renal fibrosis, in particular in the long-term post-infection. Accordingly, we investigated whether the signaling system that is known to initiate the above-mentioned changes in kidneys in other conditions is also activated in long-term post-MHV-1 infection. We found increased TGF-ß1, FGF23, NGAL, IL-18, HIF1-α, TLR2, YKL-40, and B2M mRNA levels in long-term post-MHV-1 infection, but not EGFR, TNFR1, BCL3, and WFDC2. However, only neutrophil gelatinase-associated lipocalin (NGAL) increased in acute infection (7 days). Immunoblot studies showed an elevation in protein levels of HIF1-α, TLR-2, and EGFR in long-term post-MHV-1 infection, while KIM-1 and MMP-7 protein levels are increased in acute infection. Treatment with a synthetic peptide, SPIKENET (SPK), which inhibits spike protein binding, reduced NGAL mRNA in acute infection, and decreased TGF-ß1, BCL3 mRNA, EGFR, HIF1-α, and TLR-2 protein levels long-term post-MHV-1 infection. These findings suggest that fibrotic events may initiate early in SARS-CoV-2 infection, leading to pronounced kidney fibrosis in long COVID. Targeting these factors therapeutically may prevent acute or long-COVID-associated kidney complications.

2.
J Exp Clin Cancer Res ; 41(1): 264, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045416

RESUMO

BACKGROUND: Esophageal adenocarcinoma (EAC) is characterized by poor prognosis and low survival rate. Chronic gastroesophageal reflux disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE), a preneoplastic metaplastic condition, and its progression to EAC. Yes-associated protein 1 (YAP1) activation mediates stem-like properties under cellular stress. The role of acidic bile salts (ABS) in promoting YAP1 activation under reflux conditions remains unexplored. METHODS: A combination of EAC cell lines, transgenic mice, and patient-derived xenografts were utilized in this study. mRNA expression and protein levels of APE1 and YAP1 were evaluated by qRT-PCR, western blot, and immunohistochemistry. YAP1 activation was confirmed by immunofluorescence staining and luciferase transcriptional activity reporter assay. The functional role and mechanism of regulation of YAP1 by APE1 was determined by sphere formation assay, siRNA mediated knockdown, redox-specific inhibition, and co-immunoprecipitation assays. RESULTS: We showed that YAP1 signaling is activated in BE and EAC cells following exposure to ABS, the mimicry of reflux conditions in patients with GERD. This induction was consistent with APE1 upregulation in response to ABS. YAP1 activation was confirmed by its nuclear accumulation with corresponding up-regulation of YAP1 target genes. APE1 silencing inhibited YAP1 protein induction and reduced its nuclear expression and transcriptional activity, following ABS treatment. Further investigation revealed that APE1-redox-specific inhibition (E3330) or APE1 redox-deficient mutant (C65A) abrogated ABS-mediated YAP1 activation, indicating an APE1 redox-dependent mechanism. APE1 silencing or E3330 treatment reduced YAP1 protein levels and diminished the number and size of EAC spheroids. Mechanistically, we demonstrated that APE1 regulated YAP1 stability through interaction with ß-TrCP ubiquitinase, whereas APE1-redox-specific inhibition induced YAP1 poly-ubiquitination promoting its degradation. CONCLUSION: Our findings established a novel function of APE1 in EAC progression elucidating druggable molecular vulnerabilities via targeting APE1 or YAP1 for the treatment of EAC.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Refluxo Gastroesofágico , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Ácidos e Sais Biliares , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias Esofágicas/patologia , Refluxo Gastroesofágico/complicações , Humanos , Camundongos , Oxirredução , Proteínas de Sinalização YAP
3.
Redox Biol ; 43: 101970, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887608

RESUMO

BACKGROUND: Chronic gastroesophageal reflux disease (GERD) is a major risk factor for the development of metaplastic Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Uncontrolled accumulation of reactive oxygen species (ROS) in response to acidic bile salts (ABS) in reflux conditions can be lethal to cells. In this study, we investigated the role of APE1/REF1 in regulating nuclear erythroid factor-like 2 (NRF2), the master antioxidant transcription factor, in response to reflux conditions. RESULTS: We found that APE1 protein was critical for protecting against cellular ROS levels, oxidative DNA damage, double strand DNA breaks, and cell death in response to conditions that mimic reflux. Analysis of cell lines and de-identified tissues from patients with EAC demonstrated overexpression of both APE1 and NRF2 in EAC cells, as compared to non-neoplastic esophageal cells. Using reflux conditions, we detected concordant and prolonged increases of APE1 and NRF2 protein levels for several hours, following transient short exposure to ABS (20 min). NRF2 transcription activity, as measured by ARE luciferase reporter, and expression of its target genes (HO-1 and TRXND1) were similarly increased in response to ABS. Using genetic knockdown of APE1, we found that APE1 was required for the increase in NRF2 protein stability, nuclear localization, and transcription activation in EAC. Using knockdown of APE1 with reconstitution of wild-type and a redox-deficient mutant (C65A) of APE1, as well as pharmacologic APE1 redox inhibitor (E3330), we demonstrated that APE1 regulated NRF2 in a redox-dependent manner. Mechanistically, we found that APE1 is required for phosphorylation and inactivation of GSK-3ß, an important player in the NRF2 degradation pathway. CONCLUSION: APE1 redox function was required for ABS-induced activation of NRF2 by regulating phosphorylation and inactivation of GSK-3ß. The APE1-NRF2 network played a critical role in protecting esophageal cells against ROS and promoting cell survival under oxidative reflux conditions.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Glicogênio Sintase Quinase 3 beta , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução
4.
J Cancer ; 3: 93-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359530

RESUMO

In this short communication we report a quick, cost-free method of purification of DNA fragments from agarose gel. Unlike those procedures that involve commercial kits, this method uses glass wool or absorbent cotton to filter agarose gel during a quick spinning-down of DNA, thus significantly simplifying the routine practice of many molecular biologists and decreasing the cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA