Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0271584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921335

RESUMO

Ovarian cancer (OC) is a lethal gynecological malignancy with a five-year survival rate of only 46%. Development of resistance to platinum-based chemotherapy is a common cause of high mortality rates among OC patients. Tumor and transcriptomic heterogeneity are drivers of platinum resistance in OC. Platinum-based chemotherapy enriches for ovarian cancer stem cells (OCSCs) that are chemoresistant and contribute to disease recurrence and relapse. Studies examining the effect of different treatments on subpopulations of HGSOC cell lines are limited. Having previously demonstrated that combined treatment with an enhancer of zeste homolog 2 inhibitor (EZH2i) and a RAC1 GTPase inhibitor (RAC1i) inhibited survival of OCSCs, we investigated EZH2i and RAC1i combination effects on HGSOC heterogeneity using single cell RNA sequencing. We demonstrated that RAC1i reduced expression of stemness and early secretory marker genes, increased expression of an intermediate secretory marker gene and induced inflammatory gene expression. Importantly, RAC1i alone and in combination with EZH2i significantly reduced oxidative phosphorylation and upregulated Sirtuin signaling pathways. Altogether, we demonstrated that combining a RAC1i with an EZH2i promoted differentiation of subpopulations of HGSOC cells, supporting the future development of epigenetic drug combinations as therapeutic approaches in OC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/genética , Linhagem Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Feminino , Humanos , Recidiva Local de Neoplasia/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/uso terapêutico , Análise de Célula Única , Transcriptoma
2.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884498

RESUMO

Ovarian cancer is a deadly disease attributed to late-stage detection as well as recurrence and the development of chemoresistance. Ovarian cancer stem cells (OCSCs) are hypothesized to be largely responsible for the emergence of chemoresistant tumors. Although chemotherapy may initially succeed at decreasing the size and number of tumors, it leaves behind residual malignant OCSCs. In this study, we demonstrate that aldehyde dehydrogenase 1A1 (ALDH1A1) is essential for the survival of OCSCs. We identified a first-in-class ALDH1A1 inhibitor, compound 974, and used 974 as a tool to decipher the mechanism of stemness regulation by ALDH1A1. The treatment of OCSCs with 974 significantly inhibited ALDH activity, the expression of stemness genes, and spheroid and colony formation. An in vivo limiting dilution assay demonstrated that 974 significantly inhibited CSC frequency. A transcriptomic sequencing of cells treated with 974 revealed a significant downregulation of genes related to stemness and chemoresistance as well as senescence and the senescence-associated secretory phenotype (SASP). We confirmed that 974 inhibited the senescence and stemness induced by platinum-based chemotherapy in functional assays. Overall, these data establish that ALDH1A1 is essential for OCSC survival and that ALDH1A1 inhibition suppresses chemotherapy-induced senescence and stemness. Targeting ALDH1A1 using small-molecule inhibitors in combination with chemotherapy therefore presents a promising strategy to prevent ovarian cancer recurrence and has the potential for clinical translation.

3.
J Transl Med ; 20(1): 246, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641987

RESUMO

BACKGROUND: Platinum based agents-cisplatin and carboplatin in combination with taxanes are used for the treatment of ovarian cancer (OC) patients. However, the majority of OC patients develop recurrent, platinum resistant disease that is uniformly fatal. Platinum treatment enriches for chemoresistant aldehyde dehydrogenase (ALDH) + ovarian cancer stem cells (OCSCs), which contribute to tumor recurrence and disease relapse. Acquired platinum resistance also includes metabolic reprograming and switching to oxidative phosphorylation (OXPHOS). Chemosensitive cells rely on glycolysis while chemoresistant cells have the ability to switch between glycolysis and OXPHOS, depending on which pathway drives a selective advantage for growth and chemoresistance. High expression of genes involved in OXPHOS and high production of mitochondrial ROS are characteristics of OCSCs, suggesting that OCSCs favor OXPHOS over glycolysis. Based on connections between OCSCs, chemoresistance and OXPHOS, we hypothesize that platinum treatment induces changes in metabolism that contribute to platinum-induced enrichment of OCSCs. METHODS: The effect of cisplatin on mitochondrial activity was assessed by JC1 staining and expression of OXPHOS genes by RT-qPCR. Cisplatin-induced changes in Sirtuin 1 (SIRT1) levels and activity were assessed by western blot. Small molecule inhibitors of mitochondrial complex I and SIRT1 were used to determine if their enzymatic activity contributes to the platinum-induced enrichment of OCSCs. The percentage of ALDH + OCSCs in OC cells and tumor tissue from xenograft models across different treatment conditions was analyzed using ALDEFLUOR assay and flow cytometry. RESULTS: We demonstrate that platinum treatment increases mitochondrial activity. Combined treatment of platinum agents and OXPHOS inhibitors blocks the platinum-induced enrichment of ALDH + OCSCs in vitro and in vivo. Furthermore, platinum treatment increases SIRT1 levels and subsequent deacetylase activity, which likely contributes to the increase in platinum-induced mitochondrial activity. CONCLUSIONS: These findings on metabolic pathways altered by platinum-based chemotherapy have uncovered key targets that can be exploited therapeutically to block the platinum-induced enrichment of OCSCs, ultimately improving the survival of OC patients.


Assuntos
Mitocôndrias , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Fosforilação Oxidativa , Platina , Animais , Cisplatino/farmacologia , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Sirtuína 1/metabolismo
4.
Cancer Res ; 81(14): 3791-3805, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34035083

RESUMO

Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA , Células Enteroendócrinas/metabolismo , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Células Enteroendócrinas/patologia , Células HT29 , Xenoenxertos , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Humanos , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia
5.
Cancer Discov ; 11(7): 1792-1807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632774

RESUMO

Colorectal cancer is multifaceted, with subtypes defined by genetic, histologic, and immunologic features that are potentially influenced by inflammation, mutagens, and/or microbiota. Colorectal cancers with activating mutations in BRAF are associated with distinct clinical characteristics, although the pathogenesis is not well understood. The Wnt-driven multiple intestinal neoplasia (MinApcΔ716/+) enterotoxigenic Bacteroides fragilis (ETBF) murine model is characterized by IL17-dependent, distal colon adenomas. Herein, we report that the addition of the BRAF V600E mutation to this model results in the emergence of a distinct locus of midcolon tumors. In ETBF-colonized BRAF V600E Lgr5 CreMin (BLM) mice, tumors have similarities to human BRAF V600E tumors, including histology, CpG island DNA hypermethylation, and immune signatures. In comparison to Min ETBF tumors, BLM ETBF tumors are infiltrated by CD8+ T cells, express IFNγ signatures, and are sensitive to anti-PD-L1 treatment. These results provide direct evidence for critical roles of host genetic and microbiota interactions in colorectal cancer pathogenesis and sensitivity to immunotherapy. SIGNIFICANCE: Colorectal cancers with BRAF mutations have distinct characteristics. We present evidence of specific colorectal cancer gene-microbial interactions in which colonization with toxigenic bacteria drives tumorigenesis in BRAF V600E Lgr5 CreMin mice, wherein tumors phenocopy aspects of human BRAF-mutated tumors and have a distinct IFNγ-dominant immune microenvironment uniquely responsive to immune checkpoint blockade.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Bacteroides fragilis/fisiologia , Neoplasias Colorretais/microbiologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Mutação
6.
Mol Cancer Res ; 18(11): 1699-1710, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32801161

RESUMO

Platinum resistance is a common occurrence in high-grade serous ovarian cancer and a major cause of ovarian cancer deaths. Platinum agents form DNA cross-links, which activate nucleotide excision repair (NER), Fanconi anemia, and homologous recombination repair (HRR) pathways. Chromatin modifications occur in the vicinity of DNA damage and play an integral role in the DNA damage response (DDR). Chromatin modifiers, including polycomb repressive complex 1 (PRC1) members, and chromatin structure are frequently dysregulated in ovarian cancer and can potentially contribute to platinum resistance. However, the role of chromatin modifiers in the repair of platinum DNA damage in ovarian cancer is not well understood. We demonstrate that the PRC1 complex member RING1A mediates monoubiquitination of lysine 119 of phosphorylated H2AX (γH2AXub1) at sites of platinum DNA damage in ovarian cancer cells. After platinum treatment, our results reveal that NER and HRR both contribute to RING1A localization and γH2AX monoubiquitination. Importantly, replication protein A, involved in both NER and HRR, mediates RING1A localization to sites of damage. Furthermore, RING1A deficiency impairs the activation of the G2-M DNA damage checkpoint, reduces the ability of ovarian cancer cells to repair platinum DNA damage, and increases sensitivity to platinum. IMPLICATIONS: Elucidating the role of RING1A in the DDR to platinum agents will allow for the identification of therapeutic targets to improve the response of ovarian cancer to standard chemotherapy regimens.


Assuntos
Histonas/metabolismo , Neoplasias Ovarianas/genética , Platina/uso terapêutico , Complexo Repressor Polycomb 1/metabolismo , Animais , Feminino , Humanos , Neoplasias Ovarianas/patologia , Fosforilação , Ubiquitinação
7.
Mol Cancer Res ; 18(2): 264-277, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704733

RESUMO

Activation of the epithelial-to-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with colorectal cancer contributing to increased invasion and metastasis. Little is known about how oncogenic signaling pathways such as PI3K/AKT synergize with chromatin modifiers to activate the EMT program. Lysine-specific demethylase 1 (LSD1) is a chromatin-modifying enzyme that is overexpressed in colorectal cancer and enhances cell migration. In this study, we determine that LSD1 expression is significantly elevated in patients with colorectal cancer with mutation of the catalytic subunit of PI3K, PIK3CA, compared with patients with colorectal cancer with WT PIK3CA. LSD1 enhances activation of the AKT kinase in colorectal cancer cells through a noncatalytic mechanism, acting as a scaffolding protein for the transcription-repressing CoREST complex. In addition, growth of PIK3CA-mutant colorectal cancer cells is uniquely dependent on LSD1. Knockdown or CRISPR knockout of LSD1 blocks AKT-mediated stabilization of the EMT-promoting transcription factor Snail and effectively blocks AKT-mediated EMT and migration. Overall, we uniquely demonstrate that LSD1 mediates AKT activation in response to growth factors and oxidative stress, and LSD1-regulated AKT activity promotes EMT-like characteristics in a subset of PIK3CA-mutant cells. IMPLICATIONS: Our data support the hypothesis that inhibitors targeting the CoREST complex may be clinically effective in patients with colorectal cancer harboring PIK3CA mutations.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Inativação de Genes , Células HCT116 , Células HT29 , Histona Desmetilases/genética , Humanos , Mutação , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Transfecção
8.
Cancers (Basel) ; 10(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061485

RESUMO

Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs have an inflammatory component that contributes to their progression. At sites of inflammation, epithelial cells are exposed to increased levels of inflammatory mediators such as reactive oxygen species, cytokines, prostaglandins, and growth factors that contribute to increased cell division, and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the pro-inflammatory tumor microenvironment environment (TME) contributes to EOC metastasis and chemoresistance. In this review we will discuss the roles inflammation and inflammatory mediators play in the development, progression, metastasis, and chemoresistance of EOC.

9.
Cancer Res ; 77(13): 3467-3478, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522752

RESUMO

Aberrant silencing of genes by DNA methylation contributes to cancer, yet how this process is initiated remains unclear. Using a murine model of inflammation-induced tumorigenesis, we tested the hypothesis that inflammation promotes recruitment of epigenetic proteins to chromatin, initiating methylation and gene silencing in tumors. Compared with normal epithelium and noninflammation-induced tumors, inflammation-induced tumors gained DNA methylation at CpG islands, some of which are associated with putative tumor suppressor genes. Hypermethylated genes exhibited enrichment of repressive chromatin marks and reduced expression prior to tumorigenesis, at a time point coinciding with peak levels of inflammation-associated DNA damage. Loss of MutS homolog 2 (MSH2), a mismatch repair (MMR) protein, abrogated early inflammation-induced epigenetic alterations and DNA hypermethylation alterations observed in inflammation-induced tumors. These results indicate that early epigenetic alterations initiated by inflammation and MMR proteins lead to gene silencing during tumorigenesis, revealing a novel mechanism of epigenetic alterations in inflammation-driven cancer. Understanding such mechanisms will inform development of pharmacotherapies to reduce carcinogenesis. Cancer Res; 77(13); 3467-78. ©2017 AACR.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/genética , Inflamação/genética , Inflamação/patologia , Animais , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA