Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 107(8): 1763-1770, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983124

RESUMO

If tolerated in biological environments, recombinant structural proteins offer the advantage that biological cues dictating cell attachment and material degradation can be modified as required for clinical application using genetic engineering. In this study, we investigate the biological response to materials generated from the recombinant honeybee silk protein, AmelF3, a structural protein that can be produced at high levels by fermentation in Escherichia coli. The protein can be readily purified from E. coli host cell proteins after transgenic production and fabricated into various material formats. When implanted subcutaneously according to International Standard ISO 10993 tests, materials generated from the purified recombinant protein were found to be noncytotoxic, inducing a transient weak immunogenic response and a chronic inflammatory response that resolved over time. While preliminary, this study supports the ongoing development of materials generated from this protein for biomedical applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1763-1770, 2019.


Assuntos
Abelhas/química , Materiais Biocompatíveis/farmacologia , Proteínas Recombinantes/imunologia , Seda/imunologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Camundongos , Implantação de Prótese , Ratos Sprague-Dawley , Tela Subcutânea/efeitos dos fármacos , Fatores de Tempo
2.
PLoS One ; 13(9): e0203948, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30240428

RESUMO

Many of the challenges we currently face as an advanced society have been solved in unique ways by biological systems. One such challenge is developing strategies to avoid microbial infection. Social aculeates (wasps, bees and ants) mitigate the risk of infection to their colonies using a wide range of adaptations and mechanisms. These adaptations and mechanisms are reliant on intricate social structures and are energetically costly for the colony. It seems likely that these species must have had alternative and simpler mechanisms in place to ensure the maintenance of hygienic domicile conditions prior to the evolution of these complex behaviours. Features of the aculeate coiled-coil silk proteins are reminiscent of those of naturally occurring α-helical antimicrobial peptides (AMPs). In this study, we demonstrate that peptides derived from the aculeate silk proteins have antimicrobial activity. We reconstruct the predicted ancestral silk sequences of an aculeate ancestor that pre-dates the evolution of sociality and demonstrate that these ancestral sequences also contained peptides with antimicrobial properties. It is possible that the silks evolved as an antifouling material and facilitated the evolution of sociality. These materials serve as model materials for consideration in future biomaterial development.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Seda/genética , Seda/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Formigas/genética , Formigas/fisiologia , Abelhas/genética , Abelhas/fisiologia , Evolução Molecular , Proteínas de Insetos/química , Filogenia , Seda/química , Comportamento Social , Vespas/genética , Vespas/fisiologia
3.
J Inorg Biochem ; 177: 219-227, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29031180

RESUMO

In our previous studies, heme was bound into honeybee silk to generate materials that could function as nitric oxide sensors or as recoverable heterogeneous biocatalysts. In this study, we sought to increase the heme-binding capacity of the silk protein by firstly redesigning the heme binding site to contain histidine as the coordinating residue and secondly, by adding multiple histidine residues within the core of the coiled coil core region of the modified silk protein. We used detergent and a protein denaturant to confirm the importance of the helical structure of the silk for heme coordination. Aqueous methanol treatment, which was used to stabilize the materials, transformed the low-spin, six-coordinate heme to a five-coordinate high-spin complex, thus providing a vacant site for ligand binding. The optimal aqueous methanol treatment time that simultaneously maintains the helical protein structure and stabilizes the silk material without substantial leaching of heme from the system was determined.


Assuntos
Heme/química , Hemeproteínas/química , Proteínas de Insetos/química , Engenharia de Proteínas , Seda/química , Animais , Abelhas , Sítios de Ligação , Fenômenos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Histidina/química , Proteínas de Insetos/genética , Mutação , Estrutura Quaternária de Proteína , Seda/genética
4.
ACS Omega ; 2(8): 4456-4463, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023723

RESUMO

Honeybee silk proteins can be produced at high levels in recombinant systems, fabricated into materials, and are tolerant of amino acid modifications: properties that make them exciting templates for designing new functional materials. Here, we explore the properties of materials either made from silk-antimicrobial peptide (AMP) fusion proteins or silk containing entrapped AMPs or silver nanoparticles. Inclusion of AMP within the silk protein sequence did not affect our ability to express the proteins or process them into films. When AMP-silk proteins and Escherichia coli cells were coincubated in solution, a reduction in cell numbers was observed after degradation of the chimeric protein to release a truncated version of the AMP. In films, the AMP was retained in the silk with leaching rates of <1% per day. Films containing silver nanoparticles were antimicrobial, with the silk preventing aggregation of nanoparticles and slowing the rate of dissolution of the particles.

5.
ACS Appl Mater Interfaces ; 6(20): 18189-96, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25229876

RESUMO

Viruses are important for a range of modern day applications. However, their utility is limited by their susceptibility to temperature degradation. In this study, we report a simple system to compare the ability of different dried protein films to stabilize viruses against exposure to elevated temperatures. Films from each of three different silks, silkworm, honeybee silk and hornet silk, stabilized entrapped viruses at 37 °C better than films of albumin from bovine serum (BSA) and all four proteins provided substantially more stabilization than no protein controls. A comparison of the molecular structure of the silks and BSA films showed no correlation between the ability of the proteins to stabilize the virus and the secondary structure of the protein in the films. The mechanism of stabilization is discussed and a hypothesis is suggested to explain the superior performance of the silk proteins.


Assuntos
Seda/química , Vírus/química , Animais , Abelhas , Bovinos , Viabilidade Microbiana , Conformação Proteica , Soroalbumina Bovina/metabolismo , Espectrofotometria Infravermelho , Temperatura , Vírus/patogenicidade , Água/química
6.
Sci Rep ; 3: 2864, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24091725

RESUMO

Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials.


Assuntos
Colágeno/química , Proteínas de Insetos/química , Insetos , Seda/química , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hidroxiprolina/química , Insetos/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/química , Alinhamento de Sequência , Seda/biossíntese , Difração de Raios X
7.
Macromol Biosci ; 13(10): 1321-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23881528

RESUMO

Flexible and solvent stable fibers are produced after concentrated recombinant honeybee protein solutions are extruded into a methanol bath, dried, drawn in aqueous methanol, then covalently cross-linked using dry heat. Proteins in solution are predominantly coiled coil. Significant levels of non-orientated ß-sheets form during drying or after coagulation in aqueous methanol. Drawing generally aligns the coiled coil component parallel with the fibre axis and ß-sheet component perpendicular to the fiber axis. The fibres are readily handled, stable in the strong protein denaturants, urea and guanidinium, and suitable for a range of applications such as weaving and knitting.


Assuntos
Abelhas/química , Estrutura Secundária de Proteína , Proteínas/química , Seda/química , Animais , Animais Geneticamente Modificados , Abelhas/genética , Proteínas/genética , Soluções/química , Resistência à Tração , Água/química
8.
PLoS One ; 7(12): e52308, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300639

RESUMO

Honeybee larvae produce silken cocoons that provide mechanical stability to the hive. The silk proteins are small and non-repetitive and therefore can be produced at large scale by fermentation in E. coli. The recombinant proteins can be fabricated into a range of forms; however the resultant material is soluble in water and requires a post production stabilizing treatment. In this study, we describe the structural and mechanical properties of sponges fabricated from artificial honeybee silk proteins that have been stabilized in aqueous methanol baths or by dry heating. Aqueous methanol treatment induces formation of ß-sheets, with the amount of ß-sheet dictated by methanol concentration. Formation of ß-sheets renders sponges insoluble in water and generates a reversibly compressible material. Dry heat treatments at 190°C produce a water insoluble material, that is stiffer than the methanol treated equivalent but without significant secondary structural changes. Honeybee silk proteins are particularly high in Lys, Ser, Thr, Glu and Asp. The properties of the heat treated material are attributed to generation of lysinoalanine, amide (isopeptide) and/or ester covalent cross-links. The unique ability to stabilize material by controlling secondary structure rearrangement and covalent cross-linking allows us to design recombinant silk materials with a wide range of properties.


Assuntos
Abelhas , Temperatura Alta , Imersão , Proteínas de Insetos/química , Fenômenos Físicos , Seda/química , Solventes/farmacologia , Animais , Fenômenos Biomecânicos , Metanol/química , Metanol/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Fatores de Tempo , Água/química
9.
Proc Biol Sci ; 277(1698): 3255-63, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20519222

RESUMO

Onychophora are ancient, carnivorous soft-bodied invertebrates which capture their prey in slime that originates from dedicated glands located on either side of the head. While the biochemical composition of the slime is known, its unusual nature and the mechanism of ensnaring thread formation have remained elusive. We have examined gene expression in the slime gland from an Australian onychophoran, Euperipatoides rowelli, and matched expressed sequence tags to separated proteins from the slime. The analysis revealed three categories of protein present: unique high-molecular-weight proline-rich proteins, and smaller concentrations of lectins and small peptides, the latter two likely to act as protease inhibitors and antimicrobial agents. The predominant proline-rich proteins (200 kDa+) are composed of tandem repeated motifs and distinguished by an unusually high proline and charged residue content. Unlike the highly structured proteins such as silks used for prey capture by spiders and insects, these proteins lack ordered secondary structure over their entire length. We propose that on expulsion of slime from the gland onto prey, evaporative water loss triggers a glass transition change in the protein solution, resulting in adhesive and enmeshing thread formation, assisted by cross-linking of complementary charged and hydrophobic regions of the protein. Euperipatoides rowelli has developed an entirely new method of capturing prey by harnessing disordered proteins rather than structured, silk-like proteins.


Assuntos
Anelídeos/metabolismo , Proteínas/isolamento & purificação , Sequência de Aminoácidos , Animais , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Proteínas/química , Proteínas/genética , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
10.
J Struct Biol ; 168(3): 467-75, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19580871

RESUMO

Classic studies of protein structure in the 1950s and 1960s demonstrated that green lacewing egg stalk silk possesses a rare native cross-beta sheet conformation. We have identified and sequenced the silk genes expressed by adult females of a green lacewing species. The two encoded silk proteins are 109 and 67 kDa in size and rich in serine, glycine and alanine. Over 70% of each protein sequence consists of highly repetitive regions with 16-residue periodicity. The repetitive sequences can be fitted to an elegant cross-beta sheet structural model with protein chains folded into regular 8-residue long beta strands. This model is supported by wide-angle X-ray scattering data and tensile testing from both our work and the original papers. We suggest that the silk proteins assemble into stacked beta sheet crystallites bound together by a network of cystine cross-links. This hierarchical structure gives the lacewing silk high lateral stiffness nearly threefold that of silkworm silk, enabling the egg stalks to effectively suspend eggs and protect them from predators.


Assuntos
Insetos/metabolismo , Seda/química , Seda/fisiologia , Animais , Fenômenos Biomecânicos , Bombyx/metabolismo , Cromatografia Líquida , Feminino , Espectrometria de Massas , Microscopia de Varredura por Sonda , Estrutura Secundária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Insect Biochem Mol Biol ; 37(10): 1036-43, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17785191

RESUMO

Male hilarine flies (Diptera: Empididae: Empidinae) present prospective mates with silk-wrapped gifts. The silk is produced by specialised cells located in the foreleg basitarsus of the fly. In this report, we describe 2.3 kbp of the silk gene from a hilarine fly (Hilara spp.) that was identified from highly expressed mRNA extracted from the prothoracic basitarsus of males. Using specific primers, we found that the silk gene is expressed in the basitarsi and not in any other part of the male fly. The silk gene from the basitarsi cDNA library matched an approximately 220 kDa protein from the silk-producing basitarsus. Although the predicted silk protein sequence was unlike any other protein sequence in available databases, the architecture and composition of the predicted protein had features in common with previously described silks. The convergent evolution of these features in the Hilarini silk and other silks emphasises their importance in the functional requirements of silk proteins.


Assuntos
Dípteros/genética , Proteínas de Insetos/metabolismo , Seda/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Dípteros/anatomia & histologia , Dípteros/fisiologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Masculino , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Análise de Sequência de Proteína , Comportamento Sexual Animal , Seda/química , Seda/genética
12.
Mol Biol Evol ; 24(11): 2424-32, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17703050

RESUMO

Silks are strong protein fibers produced by a broad array of spiders and insects. The vast majority of known silks are large, repetitive proteins assembled into extended beta-sheet structures. Honeybees, however, have found a radically different evolutionary solution to the need for a building material. The 4 fibrous proteins of honeybee silk are small ( approximately 30 kDa each) and nonrepetitive and adopt a coiled coil structure. We examined silks from the 3 superfamilies of the Aculeata (Hymenoptera: Apocrita) by infrared spectroscopy and found coiled coil structure in bees (Apoidea) and in ants (Vespoidea) but not in parasitic wasps of the Chrysidoidea. We subsequently identified and sequenced the silk genes of bumblebees, bulldog ants, and weaver ants and compared these with honeybee silk genes. Each species produced orthologues of the 4 small fibroin proteins identified in honeybee silk. Each fibroin contained a continuous predicted coiled coil region of around 210 residues, flanked by 23-160 residue length N- and C-termini. The cores of the coiled coils were unusually rich in alanine. There was extensive sequence divergence among the bee and ant silk genes (<50% similarity between the alignable regions of bee and ant sequences), consistent with constant and equivalent divergence since the bee/ant split (estimated to be 155 Myr). Despite a high background level of sequence diversity, we have identified conserved design elements that we propose are essential to the assembly and function of coiled coil silks.


Assuntos
Fibroínas/genética , Himenópteros/genética , Proteínas de Insetos/genética , Seda/metabolismo , Sequência de Aminoácidos , Animais , Formigas/genética , Formigas/metabolismo , Abelhas/genética , Abelhas/metabolismo , Cromatografia Líquida , Evolução Molecular , Fibroínas/química , Biblioteca Gênica , Himenópteros/classificação , Himenópteros/metabolismo , Proteínas de Insetos/química , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem , Vespas/genética , Vespas/metabolismo
13.
Genome Res ; 16(11): 1414-21, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065612

RESUMO

The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.


Assuntos
Abelhas/genética , Genes de Insetos , Proteínas de Insetos/genética , Família Multigênica , Seda/genética , Sequência de Aminoácidos , Animais , Composição de Bases , Bombyx/genética , DNA/química , DNA/genética , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA