Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Acta Trop ; 248: 107020, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739253

RESUMO

BACKGROUND: The diagnosis of malaria infection in humans remains challenging, further complicated by mixed Plasmodium species infections, potentially altering disease severity and morbidity. To facilitate appropriate control measures and treatment, rapid, sensitive, and specific detection assays, including those for the second minor species, would be required. This study aimed to develop a multiplex high-resolution melting (hexaplex PCR-HRM) assay with seven distinct peaks corresponding to five Plasmodium species of the Plasmodium genus, and an internal control to limit false negatives providing quality assurance testing results. METHODS: Five species-specific primers for human malaria species were designed targeting on the Plasmodium 18 small subunit ribosomal RNA (18S rRNA) and mitochondrial genes. The hexaplex PCR-HRM was developed for the simultaneous and rapid detection and differentiation of five human Plasmodium spp. The limit of detection (LoD), sensitivity, and specificity of the assay were evaluated. Artificial mixing was used to assess the ability to determine the second minor species. Furthermore, a hexaplex PCR-HRM assay was used to identify 120 Plasmodium-infected clinical isolates from Kanchanaburi, Western Thailand, where malaria is endemic. RESULTS: The hexaplex PCR-HRM assay detected the targeted genome of five Plasmodium species at levels as low as 2.354-3.316 copies/uL with 91.76 % sensitivity and 98.04 % specificity. In artificial mixing, the assay could detect minority parasite species at 0.001 % of the predominant parasite population. Plasmodium vivax infections (99 %) accounted for the majority of malaria cases in Kanchanaburi, Thailand. CONCLUSIONS: The developed hexaplex PCR-HRM assay we present in this study is a novel approach for multiplexing the Plasmodium genus and detecting five Plasmodium species with the advantage of detecting second minority parasite species. The developed one-step assay without any nesting protocols would reduce the risks of cross-contamination. Moreover, it also provides a simple, sensitive, specific, and low-cost approach for optional molecular detection of malaria.


Assuntos
Malária , Plasmodium , Humanos , Sensibilidade e Especificidade , DNA de Protozoário/genética , Tailândia , Malária/diagnóstico , Malária/parasitologia , RNA Ribossômico 18S/genética , Plasmodium vivax/genética , Plasmodium falciparum/genética
3.
PLoS One ; 17(12): e0278928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36525403

RESUMO

BACKGROUND: The amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxine-pyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used. METHODS: A total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay. RESULTS: Sequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia. CONCLUSION: Despite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Humanos , Plasmodium falciparum , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Di-Hidropteroato Sintase/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Variações do Número de Cópias de DNA , Tetra-Hidrofolato Desidrogenase/genética , Tailândia , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Sulfanilamida , Combinação de Medicamentos
4.
Malar J ; 21(1): 83, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279140

RESUMO

BACKGROUND: Resistance to anti-malarials is a serious threat to the efforts to control and eliminate malaria. Surveillance based on simple field protocols with centralized testing to detect molecular markers associated with anti-malarial drug resistance can be used to identify locations where further investigations are needed. METHODS: Dried blood spots were collected from 398 patients (age range 5-59 years, 99% male) with Plasmodium falciparum infections detected using rapid diagnostic tests over two rounds of sample collection conducted in 2016 and 2017 in Komé, South-West Chad. Specimens were genotyped using amplicon sequencing or qPCR for validated markers of anti-malarial resistance including partner drugs used in artemisinin-based combination therapy (ACT). RESULTS: No mutations in the pfk13 gene known to be associated with artemisinin resistance were found but a high proportion of parasites carried other mutations, specifically K189T (190/349, 54.4%, 95%CI 49.0-59.8%). Of 331 specimens successfully genotyped for pfmdr1 and pfcrt, 52% (95%CI 46.4-57.5%) carried the NFD-K haplotype, known to be associated with reduced susceptibility to lumefantrine. Only 20 of 336 (6.0%, 95%CI 3.7-9.0%) had parasites with the pfmdr1-N86Y polymorphism associated with increased treatment failures with amodiaquine. Nearly all parasites carried at least one mutation in pfdhfr and/or pfdhps genes but 'sextuple' mutations in pfdhfr-pfdhps including pfdhps -A581G were rare (8/336 overall, 2.4%, 95%CI 1.2-4.6%). Only one specimen containing parasites with pfmdr1 gene amplification was detected. CONCLUSIONS: These results provide information on the likely high efficacy of artemisinin-based combinations commonly used in Chad, but suggest decreasing levels of sensitivity to lumefantrine and high levels of resistance to sulfadoxine-pyrimethamine used for seasonal malaria chemoprevention and intermittent preventive therapy in pregnancy. A majority of parasites had mutations in the pfk13 gene, none of which are known to be associated with artemisinin resistance. A therapeutic efficacy study needs to be conducted to confirm the efficacy of artemether-lumefantrine.


Assuntos
Antimaláricos , Plasmodium falciparum , Adolescente , Adulto , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter , Combinação Arteméter e Lumefantrina , Chade , Criança , Pré-Escolar , Resistência a Medicamentos/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Adulto Jovem
5.
Malar J ; 20(1): 454, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861860

RESUMO

BACKGROUND: Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the molecular analysis of P. knowlesi parasites causing malaria in Thailand. METHODS: Under Thailand's integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and southern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydrofolate reductase (pkdhfr) was sequenced and homology modelling was constructed. RESULTS: The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis with homology modelling, the two mutations were not associated with anti-malarial drug resistance. CONCLUSIONS: This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. The parasites were also shown to be sensitive to pyrimethamine.


Assuntos
Malária/epidemiologia , Plasmodium knowlesi/genética , Erradicação de Doenças , Genes de Protozoários , Marcadores Genéticos , Humanos , Incidência , Malária/parasitologia , Plasmodium knowlesi/classificação , Proteínas de Protozoários/análise , Tailândia/epidemiologia
6.
Antimicrob Agents Chemother ; 65(12): e0112121, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516247

RESUMO

Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People's Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance-associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Marcadores Genéticos , Humanos , Estudos Longitudinais , Malária Falciparum/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
7.
Malar J ; 20(1): 120, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639924

RESUMO

BACKGROUND: Copy number variations (CNVs) of the Plasmodium falciparum multidrug resistance 1 (pfmdr1), P. falciparum plasmepsin2 (pfplasmepsin2) and P. falciparum GTP cyclohydrolase 1 (pfgch1) genes are associated with anti-malarial drug resistance in P. falciparum malaria. Droplet digital PCR (ddPCR) assays have been developed for accurate assessment of CNVs in several human genes. The aim of the present study was to develop and validate ddPCR assays for detection of the CNVs of P. falciparum genes associated with resistance to anti-malarial drugs. METHODS: A multiplex ddPCR assay was developed to detect the CNVs in the pfmdr1 and pfplasmepsin2 genes, while a duplex ddPCR assay was developed to detect CNV in the pfgch1 gene. The gene copy number (GCN) quantification limit, as well as the accuracy and precision of the ddPCR assays were determined and compared to conventional quantitative PCR (qPCR). In order to reduce the cost of testing, a multiplex ddPCR assay of two target genes, pfmdr1 and pfplasmepsin2, was validated. In addition, the CNVs of genes of field samples collected from Thailand from 2015 to 2019 (n = 84) were assessed by ddPCR and results were compared to qPCR as the reference assay. RESULTS: There were no significant differences between the GCN results obtained from uniplex and multiplex ddPCR assays for detection of CNVs in the pfmdr1 and pfplasmepsin2 genes (p = 0.363 and 0.330, respectively). Based on the obtained gene copy number quantification limit, the accuracy and percent relative standard deviation (%RSD) value of the multiplex ddPCR assay were 95% and 5%, respectively, for detection of the CNV of the pfmdr1 gene, and 91% and 5% for detection of the CNV of the pfplasmepsin2 gene. There was no significant difference in gene copy numbers assessed by uniplex or duplex ddPCR assays regarding CNV in the pfgch1 gene (p = 0.276). The accuracy and %RSD value of the duplex ddPCR assay were 95% and 4%, respectively, regarding pfgch1 GCN. In the P. falciparum field samples, pfmdr1 and pfplasmepsin2 GCNs were amplified in 15% and 27% of samples from Ubon Ratchathani, Thailand, while pfgch1 GCN was amplified in 50% of samples from Yala, Thailand. There was 100% agreement between the GCN results obtained from the ddPCR and qPCR assays (κ = 1.00). The results suggested that multiplex ddPCR assay is the optional assay for the accurate detection of gene copy number without requiring calibration standards, while the cost and required time are reduced. Based on the results of this study, criteria for GCN detection by ddPCR analysis were generated. CONCLUSIONS: The developed ddPCR assays are simple, accurate, precise and cost-effective tools for detection of the CNVs in the pfmdr1, pfplasmepsin2 and pfgch1 genes of P. falciparum. The ddPCR assay is a useful additional tool for the surveillance of anti-malarial drug resistance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Amplificação de Genes , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium falciparum/efeitos dos fármacos , Tailândia
8.
Lancet Infect Dis ; 20(12): 1470-1480, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32679084

RESUMO

BACKGROUND: The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS: P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS: 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION: Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING: Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Sudeste Asiático/epidemiologia , Marcadores Genéticos , Haplótipos , Humanos , Epidemiologia Molecular
9.
Malar J ; 19(1): 193, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460780

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) have become the most common diagnostic tool for detection of Plasmodium falciparum malaria, in particular in remote areas. RDT blood spots provide a source of parasite DNA for molecular analysis. In this study, the utility of RDTs for molecular analysis and the performance of different methods for whole genome amplification were investigated. METHODS: Positive P. falciparum RDTs were collected from Kayin, Myanmar from August 2014 to January 2016. The RDT samples were stored for 6 months, 9 months, 20 months, 21 months, and 32 months before DNA extraction and subsequent molecular analysis of P. falciparum kelch 13 (pfkelch13) mutations, P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum plasmepsin 2 (pfplasmepsin2) gene amplification. In addition, performance of four whole genome amplification (WGA) kits were compared, including REPLI-g®, MALBACTM, PicoPLEX®, and GenomePlex®, for which DNA quantity and quality were compared between original DNA and post-WGA products. RESULTS: The proportion of successful amplification of the different molecular markers was similar between blood spots analysed from RDTs stored for 6, 9, 20, 21, or 32 months. Successful amplification was dependent on the molecular markers fragment length (p value < 0.05): 18% for a 1245 bp fragment of pfkelch13, 71% for 364 bp of pfkelch13, 81% for 87 bp of pfmdr1, 81% for 108 bp of pfplasmepsin2. Comparison of the four WGA assay kits showed that REPLI-g®, MALBACTM, and PicoPLEX® increased the quantity of DNA 60 to 750-fold, whereas the ratio of parasite DNA amplification over human DNA was most favourable for MALBAC®. Sequencing results of pfkelch13, P. falciparum chloroquine resistance transporter (pfcrt), P. falciparum dihydrofolate reductase (pfdhfr) and six microsatellite markers assessed from the post-WGA product was the same as from the original DNA. CONCLUSIONS: Blood spots from RDTs are a good source for molecular analysis of P. falciparum, even after storage up to 32 months. WGA of RDT-derived parasite DNA reliably increase DNA quantity with sufficient quality for molecular analysis of resistance markers.


Assuntos
Coleta de Amostras Sanguíneas/estatística & dados numéricos , DNA de Protozoário/análise , Testes Diagnósticos de Rotina/estatística & dados numéricos , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Plasmodium falciparum/genética , Mianmar , Fatores de Tempo
10.
Malar J ; 18(1): 12, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658642

RESUMO

BACKGROUND: Prior to this project, only a handful of online visualizations existed for exploring the published literature on molecular markers of antimalarial drug resistance, and none specifically for the markers associated with Plasmodium falciparum resistance to the partner drugs in artemisinin-based combination therapy (ACT). Molecular information is collected in studies with different designs, using a variety of molecular methodologies and data analysis strategies, making it difficult to compare across studies. The purpose of this project was to develop a free online tool, which visualizes the widely published data on molecular markers of antimalarial drug resistance, starting with the two genes pfcrt and pfmdr-1, associated with resistance to the three most common partner drugs; amodiaquine, lumefantrine and mefloquine. METHODS: A literature review was conducted, and a standardized method was used to extract data from publications, and critical decisions on visualization were made. A global geospatial database was developed of specific pfmdr1 and pfcrt single nucleotide polymorphisms and pfmdr1 copy number variation. An informatics framework was developed that allowed flexibility in development of the tool over time and efficient adaptation to different source data. RESULTS: The database discussed in this paper has pfmdr1 and pfcrt marker prevalence information, from 579 geographic sites in 76 different countries, including results from over 86,000 samples from 456 articles published January 2001-May 2017. The ACT Partner Drugs Molecular Surveyor was launched by the WorldWide Antimalarial Resistance Network (WWARN) in March 2015 and it has attracted over 3000 unique visitors since then. Presented here is a demonstration of how the Surveyor database can be explored to monitor local, temporal changes in the prevalence of molecular markers. Here publications up to May 2017 were included, however the online ACT partner drug Molecular Surveyor is continuously updated with new data and relevant markers. CONCLUSIONS: The WWARN ACT Partner Drugs Molecular Surveyor summarizes data on resistance markers in the pfmdr1 and pfcrt genes. The database is fully accessible, providing users with a rich resource to explore and analyze, and thus utilize a centralized, standardized database for different purposes. This open-source software framework can be adapted to other data, as demonstrated by the subsequent launch of the Artemisinin Molecular Surveyor and the Vivax Surveyor.


Assuntos
Antimaláricos/farmacologia , Bases de Dados como Assunto , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Sistemas On-Line , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Amodiaquina/farmacologia , Variações do Número de Cópias de DNA/efeitos dos fármacos , Lumefantrina/farmacologia , Mefloquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos
11.
Sci Rep ; 8(1): 8286, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844487

RESUMO

Here, we report the application of a portable sequencer, MinION, for genotyping the malaria parasite Plasmodium falciparum. In the present study, an amplicon mixture of nine representative genes causing resistance to anti-malaria drugs is diagnosed. First, we developed the procedure for four laboratory strains (3D7, Dd2, 7G8, and K1), and then applied the developed procedure to ten clinical samples. We sequenced and re-sequenced the samples using the obsolete flow cell R7.3 and the most recent flow cell R9.4. Although the average base-call accuracy of the MinION sequencer was 74.3%, performing >50 reads at a given position improves the accuracy of the SNP call, yielding a precision and recall rate of 0.92 and 0.8, respectively, with flow cell R7.3. These numbers increased significantly with flow cell R9.4, in which the precision and recall are 1 and 0.97, respectively. Based on the SNP information, the drug resistance status in ten clinical samples was inferred. We also analyzed K13 gene mutations from 54 additional clinical samples as a proof of concept. We found that a novel amino-acid changing variation is dominant in this area. In addition, we performed a small population-based analysis using 3 and 5 cases (K13) and 10 and 5 cases (PfCRT) from Thailand and Vietnam, respectively. We identified distinct genotypes from the respective regions. This approach will change the standard methodology for the sequencing diagnosis of malaria parasites, especially in developing countries.


Assuntos
Resistência a Medicamentos/genética , Plasmodium falciparum/genética , Análise de Sequência de DNA/métodos , Animais , Antimaláricos/farmacologia , Genótipo , Humanos , Malária Falciparum/parasitologia , Mutação/efeitos dos fármacos , Nanoporos , Parasitos/genética , Plasmodium falciparum/efeitos dos fármacos , Análise de Sequência de DNA/instrumentação , Tailândia , Vietnã
12.
Malar J ; 17(1): 24, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29325573

RESUMO

BACKGROUND: Genetic diversity of the three important antigenic proteins, namely thrombospondin-related anonymous protein (TRAP), apical membrane antigen 1 (AMA1), and 6-cysteine protein (P48/45), all of which are found in various developmental stages of Plasmodium parasites is crucial for targeted vaccine development. While studies related to the genetic diversity of these proteins are available for Plasmodium falciparum and Plasmodium vivax, barely enough information exists regarding Plasmodium malariae. The present study aims to demonstrate the genetic variations existing among these three genes in P. malariae by analysing their diversity at nucleotide and protein levels. METHODS: Three surface protein genes were isolated from 45 samples collected in Thailand (N = 33), Myanmar (N = 8), and Lao PDR (N = 4), using conventional polymerase chain reaction (PCR) assay. Then, the PCR products were sequenced and analysed using BioEdit, MEGA6, and DnaSP programs. RESULTS: The average pairwise nucleotide diversities (π) of P. malariae trap, ama1, and p48/45 were 0.00169, 0.00413, and 0.00029, respectively. The haplotype diversities (Hd) of P. malariae trap, ama1, and p48/45 were 0.919, 0.946, and 0.130, respectively. Most of the nucleotide substitutions were non-synonymous, which indicated that the genetic variations of these genes were maintained by positive diversifying selection, thus, suggesting their role as a potential target of protective immune response. Amino acid substitutions of P. malariae TRAP, AMA1, and P48/45 could be categorized to 17, 20, and 2 unique amino-acid variants, respectively. For further vaccine development, carboxyl terminal of P48/45 would be a good candidate according to conserved amino acid at low genetic diversity (π = 0.2-0.3). CONCLUSIONS: High mutational diversity was observed in P. malariae trap and ama1 as compared to p48/45 in P. malariae samples isolated from Thailand, Myanmar, and Lao PDR. Taken together, these results suggest that P48/45 might be a good vaccine candidate against P. malariae infection because of its sufficiently low genetic diversity and highly conserved amino acids especially on the carboxyl end.


Assuntos
Variação Genética , Malária/parasitologia , Proteínas de Membrana/genética , Plasmodium malariae/classificação , Plasmodium malariae/genética , Proteínas de Protozoários/genética , Substituição de Aminoácidos , Haplótipos , Humanos , Laos , Mianmar , Plasmodium malariae/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Tailândia
13.
PLoS One ; 12(4): e0175771, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423028

RESUMO

Droplet digital polymerase chain reaction (ddPCR) is a partial PCR based on water-oil emulsion droplet technology. It is a highly sensitive method for detecting and delineating minor alleles from complex backgrounds and provides absolute quantification of DNA targets. The ddPCR technology has been applied for detection of many pathogens. Here the sensitive assay utilizing ddPCR for detection and quantification of Plasmodium species was investigated. The assay was developed for two levels of detection, genus specific for all Plasmodium species and for specific Plasmodium species detection. The ddPCR assay was developed based on primers and probes specific to the Plasmodium genus 18S rRNA gene. Using ddPCR for ultra-sensitive P. falciparum assessment, the lower level of detection from concentrated DNA obtained from a high volume (1 mL) blood sample was 11 parasites/mL. For species identification, in particular for samples with mixed infections, a duplex reaction was developed for detection and quantification P. falciparum/ P. vivax and P. malariae/ P. ovale. Amplification of each Plasmodium species in the duplex reaction showed equal sensitivity to singleplex single species detection. The duplex ddPCR assay had higher sensitivity to identify minor species in 32 subpatent parasitaemia samples from Cambodia, and performed better than real-time PCR. The ddPCR assay shows high sensitivity to assess very low parasitaemia of all human Plasmodium species. This provides a useful research tool for studying the role of the asymptomatic parasite reservoir for transmission in regions aiming for malaria elimination.


Assuntos
DNA de Protozoário/genética , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Malária/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Parasitemia/diagnóstico , Adolescente , Adulto , Camboja , Diagnóstico Diferencial , Emulsões , Feminino , Humanos , Malária/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium malariae/genética , Plasmodium malariae/isolamento & purificação , Plasmodium ovale/genética , Plasmodium ovale/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA