Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 350: 124013, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670421

RESUMO

Intensive crop residue burning (CRB) in northern India triggers severe air pollution episodes over the Indo-Gangetic Plain (IGP) each year during October and November. We have quantified the contribution of hotspot districts (HSDs) and total CRB to poor air quality over the IGP. Initially, we investigated the spatiotemporal distribution of CRB fire within the domain and pinpointed five HSD in each Punjab and Haryana. Furthermore, we have simulated air quality and quantified the impact of CRB using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), incorporating recent anthropogenic emissions (EDGAR v5) and biomass burning emissions (FINN v2.4) inventories, along with MOZART-MOSAIC chemistry. The key finding is that HSDs contributed ∼80% and ∼50% of the total fire counts in Haryana and Punjab, respectively. The model effectively captured observed PM2.5 concentrations, with a normalized mean bias (NMB) below 0.2 and R-squared (R2) exceeding 0.65 at the majority of validation sites. However, some discrepancies were observed at a few sites in Delhi, Punjab, Haryana, and West Bengal. The National Capital Region experienced the highest PM2.5 concentrations, followed by Punjab, Haryana, Uttar Pradesh, Bihar, and West Bengal. Moreover, HSDs were responsible for about 70% of the total increase in CRB-induced PM2.5 in the western, central, and eastern cities, and around 50% in the northern cities. By eliminating CRB emissions across the domain, we could potentially save approximately 18,000 lives annually. Policymakers, scientists, and institutions can leverage the framework to address air pollution at national and global scales by targeting source-specific hotspots. This approach, coupled with appropriate technological and financial solutions, can contribute to achieving climate change and sustainable development goals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Estações do Ano , Índia , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Produtos Agrícolas , Material Particulado/análise , Incêndios
2.
Analyst ; 149(6): 1709-1718, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38410062

RESUMO

Small extracellular vesicles (sEVs) are cargo-carrying cellular nano-vesicles that have been explored for developing organic drug delivery modalities (DVM), an alternative to synthetic liposomes. However, scaled-up production of sEVs is a notable challenge in bringing sEV-based DVMs from the bench to the clinic. Ultracentrifugation is the most accepted isolation approach, but the cumbersome logistical issues and aftereffects of intense 'g' force hinder their applicability. In this study, we developed a new amenable isolation strategy for sEVs using a combinatorial treatment of calcium chloride and polyethylene glycol (PEG). An equivalent volume of cell culture medium from growing lung cancer A549 and H1299 cells was incubated overnight at 4 °C with different formulations (0.1 M CaCl2, 8% PEG, 12% PEG, 0.1 M CaCl2 + 8% PEG, and 0.1 M CaCl2 + 12% PEG) and centrifuged at 4000g to purify the precipitated sEVs as a pellet. Next, the extra CaCl2 was chelated out and the buffer was exchanged with PBS. The sEV number and protein content were assessed using the NTA (nanoparticle tracking analysis) and the BCA assay, respectively. Finally, transmission electron microscopy (TEM) was used to visualize the sEVs. The data from the present study demonstrated that the combination of 8% PEG and 0.1 M CaCl2 produced comparable numbers of sEVs with the ultracentrifugation technique. The sEV characteristics and structural integrity also remained intact, as evident from the TEM images and western blot assay. Thus, here we report an efficient technique for sEV isolation that can be easily scaled up.


Assuntos
Vesículas Extracelulares , Humanos , Cloreto de Cálcio , Bioensaio , Progressão da Doença , Polietilenoglicóis
3.
ACS Biomater Sci Eng ; 10(2): 697-722, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241003

RESUMO

Cancer theranostics developed through nanoengineering applications are essential for targeted oncologic interventions in the new era of personalized and precision medicine. Recently, small extracellular vesicles (sEVs) have emerged as an attractive nanoengineering platform for tumor-directed anticancer therapeutic delivery and imaging of malignant tumors. These natural nanoparticles have multiple advantages over synthetic nanoparticle-based delivery systems, such as intrinsic targeting ability, less immunogenicity, and a prolonged circulation time. Since the inception of sEVs as a viable replacement for liposomes (synthetic nanoparticles) as a drug delivery vehicle, many studies have attempted to further the therapeutic efficacy of sEVs. This article discusses engineering strategies for sEVs using physical and chemical methods to enhance their anticancer therapeutic delivery performance. We review physio-chemical techniques of effective therapeutic loading into sEV, sEV surface engineering for targeted entry of therapeutics, and its cancer environment sensitive release inside the cells/organ. Next, we also discuss the novel hybrid sEV systems developed by a combination of sEVs with lipid and metal nanoparticles to garner each component's benefits while overcoming their drawbacks. The article extensively analyzes multiple sEV labeling techniques developed and investigated for live tracking or imaging sEVs. Finally, we discuss the theranostic potential of engineered sEVs in future cancer care regimens.


Assuntos
Vesículas Extracelulares , Nanopartículas Metálicas , Medicina de Precisão , Sistemas de Liberação de Medicamentos , Engenharia
4.
Prep Biochem Biotechnol ; 53(10): 1243-1253, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36927304

RESUMO

Western blot analysis of relative protein expression relies on appropriate reference proteins for data normalization. Small extracellular vesicles (sEVs), or exosomes, are increasingly recognized as potential indicators of the physiological state of cells due to their protein composition. Therefore, accurate relative sEVs protein quantification is crucial for disease detection and prognosis applications. Currently, no documented ubiquitous reference proteins are identified for precise normalization of a protein of interest in sEVs. Here we showed the use of total protein staining method for sEVs protein normalization in western blots of samples where conventional housekeeping proteins like ß-actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are not always detected in the sEVs western blots. The No-Stain™ Protein Labeling (NSPL) method showed high sensitivity in sEVs-protein labeling and facilitated quantitative evaluation of changes in the expression pattern of the protein of interest. Further, to show the robustness of NSPL for expression analysis, the results were compared with quantitative mass spectroscopy analysis results. Here, we outline a comprehensive method for protein normalization in sEVs that will increase the value of protein expression study of therapeutically significant sEVs.


Assuntos
Corantes , Vesículas Extracelulares , Proteínas/química , Coloração e Rotulagem , Vesículas Extracelulares/metabolismo , Western Blotting
5.
Sci Rep ; 12(1): 19768, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396755

RESUMO

Heat waves are often termed as the silent killer and have become even more important as recent studies suggest that the heat wave have become second most devastating extreme weather events in terms of human deaths and losses. It is also been largely realised by scientific community that it is not just the high temperatures which are responsible for the gruesome effect of heat waves but several other meteorological parameters play a vital role in aggravating the impact and causing much more damages. In view of the above the attention of scientific community, weather forecasters as well as disaster managers has shifted to also take into account the different meteorological parameters like maximum and minimum temperatures, relative humidity, wind speed, duration/spell of heat waves and its intensity which are aggravating the impact of heat stress. In this background, this study is undertaken as an attempt to quantify the effect of different meteorological parameters on heat wave on different regions of India for different summer months (March, April, May and June). In this study the impact of individual meteorological parameter as well their cumulative effect is studied based on data of 30 years (1981-2010) for 300 stations. The effect of different meteorological parameters is identified for different months for different regions of the country. Also the cumulative scores are calculated for different regions considering different meteorological parameters, as a first initiative to perform heat hazard analysis and zonation over the entire country. This could serve as initial step for planning mitigation and adaptation strategies throughout the country. These scores as thresholds for different regions may be also useful for operational forecaster's for early impact based warning services as well as for the disaster managers, for taking effective and timely actions.


Assuntos
Transtornos de Estresse por Calor , Humanos , Resposta ao Choque Térmico , Temperatura Alta , Estações do Ano , Tempo (Meteorologia) , Índia
6.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362424

RESUMO

Lung cancer is one of the most lethal forms of cancer, with a very high mortality rate. The precise pathophysiology of lung cancer is not well understood, and pertinent information regarding the initiation and progression of lung cancer is currently a crucial area of scientific investigation. Enhanced knowledge about the disease will lead to the development of potent therapeutic interventions. Extracellular vesicles (EVs) are membrane-bound heterogeneous populations of cellular entities that are abundantly produced by all cells in the human body, including the tumor cells. A defined class of EVs called small Extracellular Vesicles (sEVs or exosomes) carries key biomolecules such as RNA, DNA, Proteins and Lipids. Exosomes, therefore, mediate physiological activities and intracellular communication between various cells, including constituent cells of the tumor microenvironment, namely stromal cells, immunological cells, and tumor cells. In recent years, a surge in studying tumor-associated non-coding RNAs (ncRNAs) has been observed. Subsequently, studies have also reported that exosomes abundantly carry different species of ncRNAs and these exosomal ncRNAs are functionally involved in cancer initiation and progression. Here, we discuss the function of exosomal ncRNAs, such as miRNAs and long non-coding RNAs, in the pathophysiology of lung tumors. Further, the future application of exosomal-ncRNAs in clinics as biomarkers and therapeutic targets in lung cancer is also discussed due to the multifaceted influence of exosomes on cellular physiology.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral/genética
7.
J Funct Biomater ; 13(1)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35323230

RESUMO

Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production. The IL-2 production was investigated for a wide range of T-cell to exosome ratios. With the successful incorporation of the RGD binding motif onto the PLLA surface at controllable densities, CD8+ T-cells were successfully attached onto 2D disks and 3D printed porous PLLA scaffolds. T-cell attachment increased with increasing RGD surface density. The diameter of the attached T-cells was 7.2 ± 0.2 µm for RGD densities below 0.5 nmoles/mm2 but dropped to 5.1 ± 0.3 µm when the RGD density was 2 nmoles/mm2 due to overcrowding. The higher the number of cancer exosomes, the less the IL-2 production by the surface-attached T-cells. In 2D disks, the IL-2 production was silenced for T-cell to exosome ratios higher than 1:10 in static conditions. IL-2 production silencing in static 3D porous scaffolds required ratios higher than 1:20. The incorporation of flow resulted in moderate to significant T-cell detachment. The portions of T-cells retained on the 3D scaffolds after exposure for 4 h to 0.15 or 1.5 mL/min of perfusion flow were 89 ± 11% and 30 ± 8%, respectively. On 3D scaffolds and in the presence of flow at 0.15 ml/min, both H1299 and A549 cancerous exosomes significantly suppressed IL-2 production for T-cell to exosome ratios of 1:1000. The much higher level of exosomes needed to silence the IL-2 production from T-cells cultured under unidirectional flow, compared to static conditions, denotes the importance of the culturing conditions and the hydrodynamic environment, on the interactions between CD8+ T-cells and cancer exosomes.

8.
Semin Cancer Biol ; 86(Pt 1): 80-100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35192929

RESUMO

Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.


Assuntos
Antineoplásicos , Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
9.
Adv Drug Deliv Rev ; 178: 113918, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375681

RESUMO

Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-ß, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.


Assuntos
Diabetes Mellitus/metabolismo , Pneumopatias/metabolismo , Neoplasias Pulmonares/metabolismo , Nanomedicina , Antineoplásicos/química , Antineoplásicos/farmacologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Pneumopatias/diagnóstico , Pneumopatias/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
10.
AAPS J ; 23(2): 30, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33586060

RESUMO

Exosomes are involved in cell-to-cell communication and play a crucial role in cellular physiology. The role of exosomes in cancer has been widely explored. Tumor cells have evolved and adapted to evade the immune response. The study of the immune system's modulations in favor of rogue tumor cells led to the development of a novel immunotherapeutic strategy targeting the immune checkpoint proteins (ICPs). In clinical settings, the response to ICP therapy has been inconsistent and is difficult to predict. Quantitating the targeted ICPs through immunohistochemistry is one approach, but is not pragmatic in a clinical setting and is often not sensitive. Examining the molecules present in bodily fluids to determine ICP treatment response, "liquid biopsy" is a convenient alternative. The term "liquid biopsy" refers to circulating tumor cells (CTCs), extracellular vesicles (EVs), non-coding (nc) RNA, circulating tumor DNA (ctDNA), circulating free DNA (cfDNA), etc. EVs includes exosomes, microvesicles, and oncosomes. Herein, we focus on exosomes isolated from bodily fluids and their use in liquid biopsy. Due to their unique ability to transfer bioactive molecules and perturb the physiology of recipient cells, exosomes have garnered attention for their immune modulation role and as a resource to identify molecules associated with liquid biopsy-based diagnostic methods. In this review, we examine the putative role of exosomes and their cargo in influencing the immune system. We discuss the immune and tumor cells present in the tumor microenvironment (TME), and the exosomes derived from these cells to understand how they participate in creating the immune-suppressive TME. Additionally, use of exosomes in liquid biopsy-based methods to measure the treatment response elicited by immunotherapy is discussed. Finally, we describe how exosomes have been used to develop immune therapies, especially cell-free vaccines, for cancer treatment.


Assuntos
Exossomos/imunologia , Imunoterapia/métodos , Oncologia/tendências , Neoplasias/imunologia , Biomarcadores Tumorais , Vacinas Anticâncer/administração & dosagem , Exossomos/metabolismo , Exossomos/transplante , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico/metabolismo , Imunoterapia/tendências , Biópsia Líquida/métodos , Oncologia/métodos , Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/terapia , Células Neoplásicas Circulantes/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia
11.
Cancers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418925

RESUMO

BACKGROUND: Treatment of metastatic melanoma possesses challenges due to drug resistance and metastases. Recent advances in targeted therapy and immunotherapy have shown clinical benefits in melanoma patients with increased survival. However, a subset of patients who initially respond to targeted therapy relapse and succumb to the disease. Therefore, efforts to identify new therapeutic targets are underway. Due to its role in stabilizing several oncoproteins' mRNA, the human antigen R (HuR) has been shown as a promising molecular target for cancer therapy. However, little is known about its potential role in melanoma treatment. METHODS: In this study, we tested the impact of siRNA-mediated gene silencing of HuR in human melanoma (MeWo, A375) and normal melanocyte cells in vitro. Cells were treated with HuR siRNA encapsulated in a lipid nanoparticle (NP) either alone or in combination with MEK inhibitor (U0126) and subjected to cell viability, cell-cycle, apoptosis, Western blotting, and cell migration and invasion assays. Cells that were untreated or treated with control siRNA-NP (C-NP) were included as controls. RESULTS: HuR-NP treatment significantly reduced the expression of HuR and HuR-regulated oncoproteins, induced G1 cell cycle arrest, activated apoptosis signaling cascade, and mitigated melanoma cells' aggressiveness while sparing normal melanocytes. Furthermore, we demonstrated that HuR-NP treatment significantly reduced the expression of the microphthalmia-associated transcription factor (MITF) in both MeWo and MITF-overexpressing MeWo cells (p < 0.05). Finally, combining HuR-NP with U0126 resulted in synergistic antitumor activity against MeWo cells (p < 0.01). CONCLUSION: HuR-NP exhibited antitumor activity in melanoma cells independent of their oncogenic B-RAF mutational status. Additionally, combinatorial therapy incorporating MEK inhibitor holds promise in overriding MITF-mediated drug resistance in melanoma.

12.
Cancer Lett ; 486: 18-28, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32439419

RESUMO

Exosomes are small membranous vesicles implicated in intercellular signalling. Through their uncanny ability to carry and deliver donor cellular cargo (biomolecules) to target cells, they exert a profound effect on the regular functioning of healthy cells and play a significant role in pathogenesis and progression of several diseases, including cancer. The composition and number of endogenously circulating exosomes frequently vary, which is often reflective of the pathophysiological status of the cell. Applicability of exosomes derived from normal cells as a drug carrier with or without modifying their intraluminal and surface components are generally tested. Conversely, exosomes also are reported to contribute to resistance towards several anti-cancer therapies. Therefore, it is necessary to carefully evaluate the role of exosomes in cancer progression, resistance and the potential use of exosomes as a delivery vehicle of cancer therapeutics. In this review, we summarize the recent advancements in the exploitation of exosomes as a drug delivery vehicle. We also discuss the role of exosomes in conferring resistance to anti-cancer therapeutics. While this review is focused on cancer, the exosome-based drug delivery and resistance is also applicable to other human diseases.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Exossomos , Neoplasias/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , Humanos , Imunoterapia , Veículos Farmacêuticos
13.
Artigo em Inglês | MEDLINE | ID: mdl-32131140

RESUMO

Under the broader category of extracellular vesicles (EVs), exosomes are now well recognized for their contribution and potential for biomedical research. During the last ten years, numerous technologies for purification and characterization of EVs have been developed. This enhanced knowledge has resulted in the development of novel applications of EVs. This review is an attempt to capture the exponential growth observed in EV science in the last decade and discuss the future potential to improve our understanding of EVs, develop technologies to overcome current limitations, and advance their utility for human benefit, especially in cancer medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Pesquisa Biomédica , Ensaios Clínicos como Assunto , Exossomos/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia
14.
Cancers (Basel) ; 11(12)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783569

RESUMO

Aberrant expression of GLI1 is responsible for aggressive tumor behavior and survival due to its effects on the DNA damage response (DDR). We investigated whether interleukin (IL)-24, a tumor suppressor, inhibits GLI1 and the associated DDR pathway in human NSCLCs. IL-24 treatment reduces mRNA and protein expression of GLI1 in lung tumor cells, but not in normal cells. GLI1 reporter assay and mRNA studies demonstrated that IL-24 regulates GLI1 at the post-transcriptional level by favoring mRNA degradation. Associated with GLI1 inhibition was marked suppression of the ATM-mediated DDR pathway resulting in increased DNA damage, as evidenced by γ-H2AX foci and Comet assay. Furthermore, attenuation of GLI1-associated DDR by IL-24 increased caspase-3 and PARP activity, resulting in cancer cell apoptosis. GLI1 inhibition and overexpression confirmed that IL-24-mediated anti-tumor effects involved the GLI-dependent pathway. Finally, we observed that IL-24-mediated alteration in GLI1 is independent of the canonical hedgehog-signaling pathway. Our study provides evidence that IL-24 treatment induces DNA damage, and reduces GLI1 expression and offers an opportunity for testing IL-24-based therapy for inhibiting GLI1 in lung cancer.

15.
AAPS J ; 20(5): 82, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987691

RESUMO

Exosomes have great potential to serve as a source of diagnostic and prognostic biomarkers for endometrial cancer (EC). Urine-derived exosomes from patients with EC and patients with symptoms of EC, but without established EC, were used to evaluate a unique miRNA expression profile. Of the 84 miRNA studied, 57 were amplified in qPCR, suggesting the differential packaging of miRNA in exosomes. Further, hsa-miR-200c-3p was identified to be enriched the most. Various bioinformatics and in silico tools were used to evaluate the biological significance of hsa-miR-200c-3p in EC. We conclude that differential miRNA in exosomes can be utilized for discovery of biomarker signatures and EC diagnosis; hsa-miR-200c-3p is one such candidate. Urine-derived exosomes pave the way for the development of non-invasive biomarkers.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/urina , Exossomos/genética , Biópsia Líquida , MicroRNAs/genética , MicroRNAs/urina , Urinálise/métodos , Feminino , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
16.
Adv Cancer Res ; 139: 1-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29941101

RESUMO

Extensive research in genetics and genomics has revealed that lung cancer is a physiologically complex and genetically heterogeneous disease. Although molecular targets that can yield favorable response have been identified, those targets cannot be exploited due to the lack of suitable drug carriers. Furthermore, lung cancer often is diagnosed at an advanced stage when the disease has metastasized. Conventional treatments are not effective for treating metastatic lung cancer. Targeted therapeutics while beneficial has challenges that include poor tumor-targeting, off-target effects, and development of resistance to therapy. Therefore, improved drug delivery systems that can deliver drugs specifically to tumor will produce improved treatment outcomes. Exosomes have a natural ability to carry functional biomolecules, such as small RNAs, DNAs, and proteins, in their lumen. This property makes exosomes attractive for use in drug delivery and molecular diagnosis. Moreover, exosomes can be attached to nanoparticles and used for high precision imaging. Exosomes are now considered an important component in liquid biopsy assessments, which are useful for detecting cancers, including lung cancer. Several studies are currently underway to develop methods of exploiting exosomes for use as efficient drug delivery vehicles and to develop novel diagnostic modalities. This chapter summarizes the current status of exosome studies with regard to their use as theranostics in lung cancer. Examples from other cancers have also been cited to illustrate the extensive applicability of exosomes to therapy and diagnosis.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Exossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Nanomedicina Teranóstica , Animais , Humanos
17.
Adv Cancer Res ; 137: 115-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29405974

RESUMO

Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Humanos , Nanopartículas/química
18.
Nanomedicine ; 14(2): 373-384, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29155362

RESUMO

Co-administration of functionally distinct anti-cancer agents has emerged as an efficient strategy in lung cancer treatment. However, a specially designed drug delivery system is required to co-encapsulate functionally different agents, such as a combination of siRNA and chemotherapy, for targeted delivery. We developed a folic acid (FA)-conjugated polyamidoamine dendrimer (Den)-based nanoparticle (NP) system for co-delivery of siRNA against HuR mRNA (HuR siRNA) and cis-diamine platinum (CDDP) to folate receptor-α (FRA) -overexpressing H1299 lung cancer cells. The co-delivery of HuR siRNA and CDDP using the FRA-targeted NP had a significantly greater therapeutic effect than did individual therapeutics. Further, the FRA-targeted NP exhibited improved cytotoxicity compared to non-targeted NP against lung cancer cells. Finally, the NP showed negligible toxicity towards normal MRC9 lung fibroblast cells. Thus, the present study demonstrates FRA-targeted Den nanoparticle system as a suitable carrier for targeted co-delivery of siRNA and chemotherapy agents in lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Cisplatino/farmacologia , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Receptor 1 de Folato/metabolismo , Nanopartículas/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Proteína Semelhante a ELAV 1/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Nanopartículas/química , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
19.
Oncotarget ; 8(58): 98495-98508, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228705

RESUMO

The Hippo pathway is an evolutionarily conserved signaling pathway that regulates proliferation and apoptosis to control organ size during developmental growth. Yes-associated protein 1 (YAP1), the terminal effector of the Hippo pathway, is a transcriptional co-activator and a potent growth promoter that has emerged as a critical oncogene. Overexpression of YAP1 has been implicated in promoting resistance to chemo-, radiation and targeted therapy in various cancers. However, the role of YAP1 in radioresistance in triple-negative breast cancer (TNBC) is currently unknown. We evaluated the role of YAP1 in radioresistance in TNBC in vitro, using two approaches to inhibit YAP1: 1) genetic inhibition by YAP1 specific shRNA or siRNA, and 2) pharmacological inhibition by using the small molecule inhibitor, verteporfin that prevents YAP1 transcriptional activity. Our findings demonstrate that both genetic and pharmacological inhibition of YAP1 sensitizes TNBC cells to radiation by inhibiting the EGFR/PI3K/AKT signaling axis and causing an increased accumulation of DNA damage. Our results reveal that YAP1 activation exerts a protective role for TNBC cells in radiotherapy and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of TNBC.

20.
Mol Cancer Ther ; 16(8): 1470-1486, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572169

RESUMO

Selective downregulation of the human antigen R (HuR) protein by siRNA may provide a powerful approach for treating lung cancer. To this end, we investigated the efficacy of transferrin receptor-targeted liposomal nanoparticle-based HuR siRNA (HuR-TfNP) therapy and compared with control siRNA (C)-TfNP therapy both, in vitro and in vivo using lung cancer models. In vitro studies showed HuR-TfNP, but not C-TfNP, efficiently downregulated HuR and HuR-regulated proteins in A549, and HCC827 lung cancer cells, resulting in reduced cell viability, inhibition of cell migration and invasion, and induction of G1 cell-cycle arrest culminating in apoptosis. However, HuR-TfNP activity in normal MRC-9 lung fibroblasts was negligible. In vivo biodistribution study demonstrated that fluorescently labeled HuR-siRNA or ICG dye-loaded TfNP localized in tumor tissues. Efficacy studies showed intratumoral or intravenous administration of HuR-TfNP significantly inhibited A549 (>55% inhibition) and HCC827 (>45% inhibition) subcutaneous tumor growth compared with C-TfNP. Furthermore, HuR-TfNP treatment reduced HuR, Ki67, and CD31 expression and increased caspase-9 and PARP cleavage and TUNEL-positive staining indicative of apoptotic cell death in tumor tissues compared with C-TfNP treatment. The antitumor activity of HuR-TfNP was also observed in an A549-luc lung metastatic model, as significantly fewer tumor nodules (9.5 ± 3.1; P < 0.001; 88% inhibition) were observed in HuR-TfNP-treated group compared with the C-TfNP-treated group (77.7 ± 20.1). Significant reduction in HuR, Ki67, and CD31 expression was also observed in the tumor tissues of HuR-TfNP-treatment compared with C-TfNP treatment. Our findings highlight HuR-TfNP as a promising nanotherapeutic system for lung cancer treatment. Mol Cancer Ther; 16(8); 1470-86. ©2017 AACR.


Assuntos
Sistemas de Liberação de Medicamentos , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Nanopartículas/química , Oncogenes , RNA Interferente Pequeno/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Fase G1 , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Pulmonares/secundário , Camundongos Nus , Invasividade Neoplásica , Receptores da Transferrina/metabolismo , Eletricidade Estática , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA