Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612222

RESUMO

In this study, we conducted an extensive investigation into broadband near-infrared luminescence of Cr3+-doped Ca3Y2Ge3O12 garnet, employing first-principles calculations within the density functional theory framework. Our initial focus involved determining the site occupancy of Cr3+ activator ions, which revealed a pronounced preference for the Y3+ sites over the Ca2+ and Ge4+ sites, as evidenced by the formation energy calculations. Subsequently, the geometric structures of the excited states 2E and 4T2, along with their optical transition energies relative to the ground state 4A2 in Ca3Y2Ge3O12:Cr3+, were successfully modeled using the ΔSCF method. Calculation convergence challenges were effectively addressed through the proposed fractional particle occupancy schemes. The constructed host-referred binding energy diagram provided a clear description of the luminescence kinetics process in the garnet, which explained the high quantum efficiency of emission. Furthermore, the accurate prediction of thermal excitation energy yielded insights into the thermal stability of the compound, as illustrated in the calculated configuration coordinate diagram. More importantly, all calculated data were consistently aligned with the experimental results. This research not only advances our understanding of the intricate interplay between geometric and electronic structures, optical properties, and thermal behavior in Cr3+-doped garnets but also lays the groundwork for future breakthroughs in the high-throughput design and optimization of luminescent performance and thermal stability in Cr3+-doped phosphors.

2.
J Phys Chem Lett ; 15(15): 4175-4184, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38597687

RESUMO

The spectroscopic properties of the Mn4+ ion are investigated in the series of isostructural double perovskite compounds, Ba2BTaO6 (B = Y, Lu, Sc). A comparison of these properties highlights the influence of covalent bonding within the perovskite framework and the degree of order between the B3+-Ta cations on the energy and intensity of the Mn4+2E → 4A2 emission transition (R-line). These two parameters of the emission spectrum are of importance for practical application since they determine the phosphor luminous efficacy. The influence of covalent bonding within the corner shared BO6/2 and TaO6/2 perovskite framework on the energy of the R-line energy is investigated. From the spectroscopic data, we have derived information on the influence of the degree of order between the B3+ and Ta5+ cations on the intensity of the R-line. The lowest energy and the highest intensity of the R-line are found in the double perovskite, Ba2ScTaO6. The purpose of this work is to propose for first time an explanation of these effects in the considered double perovskites. The obtained results are useful guidelines for practical improvement and tuning of key parameters of phosphors to the desired values.

3.
Inorg Chem ; 61(21): 8126-8134, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35381177

RESUMO

Contactless fluorescent thermometers are rapidly gaining popularity due to their sensitivity and flexibility. However, the development of sensitive and reliable non-rare-earth-containing fluorescent thermometers remains a significant challenge. Here, a new rare-earth-free, red-emitting phosphor, Li2MgHfO4:Mn4+, was developed for temperature sensing. An experimental analysis combined with density functional theory and crystal field calculations reveals that the sensitive temperature-dependent luminescence arises from nonradiative transitions induced by lattice vibration. Li2MgHfO4:Mn4+ also exhibits reliable recovery performance after 100 heating-cooling cycles due to the elimination of surface defects, which is rare but vital for practical application. This study puts forward a new design strategy for fluorescent thermometers and sheds light on the fundamental structure-property relationships that guide sensitive temperature-dependent luminescence. These considerations are crucial for developing next-generation fluorescence-based thermometers.

4.
Materials (Basel) ; 15(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057326

RESUMO

Isostatic pressure effects on the elastic and electronic properties of non-doped and Mn4+-doped K2SiF6 (KSF) have been investigated by first-principles calculations within density functional theory (DFT). Bulk modulus was obtained by the Murnaghan's equation of states (EOS) using the relationship between volume and pressures at pressures between 0 and 40 GPa, and elastic constants were calculated by the stress-strain relationship giving small distortions at each pressure point. The other elastic parameters such as shear modulus, sound velocity and Debye temperature, which can be obtained from the elastic constants, were also estimated. The influence of external isostatic pressure on the electronic properties, such as crystal field strength 10Dq and emission energy of 2E → 4A2 transition (Eem), of KSF:Mn4+ was also studied. The results suggest that 10Dq and Eem linearly increase and decrease, respectively, with increasing pressure.

5.
Inorg Chem ; 57(23): 14705-14714, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30451499

RESUMO

Narrow band red-emitting Mn4+-doped fluoride phosphor is an essential red component of modern white-light-emitting-diode (WLED) devices. Its luminescence has sensitivity to structure and influences the performance of WLED. In this paper, we report a high-performance Mn4+ phosphor based on a new heterodialkaline fluorogermanate, CsNaGeF6:Mn4+. As determined by the single-crystal X-ray diffraction analysis, the CsNaGeF6 compound crystallizes in the orthorhombic crystal system with space group Pbcm (No. 57). Under excitation by 360 and 470 nm photons, CsNaGeF6:Mn4+ emits intense red light near 630 nm with a high quantum yield of 95.6%. The electronic energy levels of the Mn4+ ion in Cs2GeF6, Na2GeF6, and CsNaGeF6 are calculated using the exchange charge model of crystal-field theory. The local Mn4+ environment inducing different zero-phonon-line emissions in the structures is probed by electron paramagnetic resonance. The Mn4+-doped heterodialkaline fluorogermanate CsNaGeF6:Mn4+ exhibits broader emission as a result of the lowest symmetry. It has higher quantum yield than Na2GeF6:Mn4+ and higher spectral luminous efficacy than Cs2GeF6:Mn4+. Given the good thermal stability and efficient luminescence, a prototype warm-WLED device with a color rendering index of 92.5, a correlated color temperature of 3783 K, and a luminous efficacy of 176.3 lm/W has been fabricated by employing the CsNaGeF6:Mn4+ phosphor as the red component. Our results not only reveal that a high-performance Mn4+ red phosphor is achieved through cationic substitutions but also construct a relationship of performance-structure to guide the design of Mn4+ phosphors in the future.

6.
Inorg Chem ; 57(23): 14872-14881, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30427192

RESUMO

In this work, the morphology, composition, crystal, and electronic structure of Ca8Mg(SiO4)4Cl2 (CMSOC) prepared by a high-temperature solid-state reaction technique are characterized first. To investigate the site occupancies of Eu3+ and Ce3+ in CMSOC, the emission spectra under well-chosen wavelength excitations and the corresponding excitation spectra by monitoring of the specific wavelength emissions are measured in detail for singly doped samples with different concentrations. Two kinds of Eu3+ or Ce3+ luminescence spectra are found. On the basis of the chemical environments of two Ca2+ sites and dielectric chemical bond theory, the sites of these two kinds of Eu3+ and Ce3+ luminescence spectra are respectively assigned. Because energy transfer between the two types of luminescent centers, concentration-dependent emission-wavelength shifting, and luminescence concentration quenching are negligible, the emission spectra of Eu3+ and Ce3+ give us a hint of their occupation preferences on two Ca2+ sites. The results indicate that, with an increase of the doping concentration, the Eu3+ ions with smaller cationic size show an occupation preference on the smaller Ca2+(1) sites, but the Ce3+ ions with larger cationic size are inclined to enter the larger Ca2+(2) sites. These opposite occupation preferences of Eu3+ and Ce3+ in CMSOC are thought to be the cationic-size-driven site selection.


Assuntos
Cério/análise , Európio/análise , Luminescência , Substâncias Luminescentes/química , Cálcio/química , Cloretos/química , Transferência de Energia , Íons/análise , Substâncias Luminescentes/síntese química , Medições Luminescentes , Magnésio/química , Tamanho da Partícula , Silicatos/química , Propriedades de Superfície
7.
Inorg Chem ; 57(15): 9241-9250, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30016088

RESUMO

A detailed investigation of the overall crystal structure, and in particular of the local structure around the cations in M2La3Sb3O14 (M = Mg, Ca) was accomplished using X-ray diffraction, steady state luminescence spectroscopy and decay kinetics, and state of the art density functional calculations. The computational tool was also used to investigate the structure of Mn2La3Sb3O14. The Eu3+ dopant ion was employed as an optical probe of the local symmetry at the cationic sites. The use of these complementary techniques shows that the antimonates under investigation belong to the rhombohedral pyrochlore family with space group R3̅ m (No. 166), but while Mg2La3Sb3O14 and Mn2La3Sb3O14 show an ordered cationic configuration, the Ca2+ and La3+ of Ca2La3Sb3O14 are disordered because of their similar ionic radii. In both the Mg- and the Ca-based compounds, the Eu3+ ions formally occupy centrosymmetric sites, but in the case of Ca2La3Sb3O14 the presence of disorder in the outer coordination spheres removes the local inversion symmetry in these sites. This has a strong influence on the Eu3+ luminescence spectrum and on the radiative decay rate of the 5D0 emitting level.

8.
Angew Chem Int Ed Engl ; 57(7): 1797-1801, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29266619

RESUMO

Mn4+ -doped fluoride phosphors have been widely used in wide-gamut backlighting devices because of their extremely narrow emission band. Solid solutions of Na2 (Six Ge1-x )F6 :Mn4+ and Na2 (Gey Ti1-y )F6 :Mn4+ were successfully synthesized to elucidate the behavior of the zero-phonon line (ZPL) in different structures. The ratio between ZPL and the highest emission intensity υ6 phonon sideband exhibits a strong relationship with luminescent decay rate. First-principles calculations are conducted to model the variation in the structural and electronic properties of the prepared solid solutions as a function of the composition. To compensate for the limitations of the Rietveld refinement, electron paramagnetic resonance and high-resolution steady-state emission spectra are used to confirm the diverse local environment for Mn4+ in the structure. Finally, the spectral luminous efficacy of radiation (LER) is used to reveal the important role of ZPL in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA