Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1066096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876067

RESUMO

The present study deals with whole genome analysis of Fusarium udum, a wilt causing pathogen of pigeon pea. The de novo assembly identified a total of 16,179 protein-coding genes, of which 11,892 genes (73.50%) were annotated using BlastP and 8,928 genes (55.18%) from KOG annotation. In addition, 5,134 unique InterPro domains were detected in the annotated genes. Apart from this, we also analyzed genome sequence for key pathogenic genes involved in virulence, and identified 1,060 genes (6.55%) as virulence genes as per the PHI-BASE database. The secretome profiling of these virulence genes indicated the presence of 1,439 secretory proteins. Of those, an annotation of 506 predicted secretory proteins through CAZyme database indicated maximum abundance of Glycosyl hydrolase (GH, 45%) family proteins followed by auxiliary activity (AA) family proteins. Interestingly, the presence of effectors for cell wall degradation, pectin degradation, and host cell death was found. The genome comprised approximately 895,132 bp of repetitive elements, which includes 128 long terminal repeats (LTRs), and 4,921 simple sequence repeats (SSRs) of 80,875 bp length. The comparative mining of effector genes among different Fusarium species revealed five common and two specific effectors in F. udum that are related to host cell death. Furthermore, wet lab experiment validated the presence of effector genes like SIX (for Secreted in Xylem). We conclude that deciphering the whole genome of F. udum would be instrumental in understanding evolution, virulence determinants, host-pathogen interaction, possible control strategies, ecological behavior, and many other complexities of the pathogen.

2.
Data Brief ; 28: 105094, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31956680

RESUMO

Wheat is the major crop in India and like other crops also subjected to influence by microbial communities of the rhizospheric region which are extremely diverse and undoubtedly play a central role in the nutrient cycle, plant productivity and growth promotion. In order to know how changes in the rhizospheric microbial community can make an impact on overall crop function, wheat rhizospheric soil samples from Ghazipur (25.913824 N 83.529715 E) regions of Eastern Uttar Pradesh (Eastern Indogangatic Plain), were collected and analyzed. Full length 16S rRNA gene amplification sequencing was performed to reveal the bacterial community in wheat rhizosphere. A total of 51,909 read were analyzed, out of that only 44,125 reads were classified and 7784 were unclassified using oxford nanopore sequencing and EPI2ME data analysis platform. MinION oxford nanopore sequencing uncovered that dominant phyla were Proteobacteria (68%), followed by firmicutes (13%), bacteroidetes (3%), actinobacteria (3%) and acidobacteria (3%). The data is available at the NCBI - Sequence Read Archive (SRA) with accession number: SRX5275271.

3.
Front Microbiol ; 9: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662469

RESUMO

Salinity stress is one of the serious factors, limiting production of major agricultural crops; especially, in sodic soils. A number of approaches are being applied to mitigate the salt-induced adverse effects in agricultural crops through implying different halotolerant microbes. In this aspect, a halotolerant, Exiguobacterium profundum PHM11 was evaluated under eight different salinity regimes; 100, 250, 500, 1000, 1500, 2000, 2500, and 3000 mM to know its inherent salt tolerance limits and salt-induced consequences affecting its natural metabolism. Based on the stoichiometric growth kinetics; 100 and 1500 mM concentrations were selected as optimal and minimal performance limits for PHM11. To know, how salt stress affects the expression profiles of regulatory genes of its key metabolic pathways, and total production of important metabolites; biomass, carotenoids, beta-carotene production, IAA and proline contents, and expression profiles of key genes affecting the protein folding, structural adaptations, transportation across the cell membrane, stress tolerance, carotenoids, IAA and mannitol production in PHM11 were studied under 100 and 1500 mM salinity. E. profundum PHM11 showed maximum and minimum growth, biomass and metabolite production at 100 and 1500 mM salinity respectively. Salt-induced fine-tuning of expression profiles of key genes of stress pathways was determined in halotolerant bacterium PHM11.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA