Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 19654, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179703

RESUMO

Recently, we have reported that extracellular vesicles (EVs) from the bone marrow mesenchymal stromal cells (BM-MSC) of aplastic anemia (AA) patients inhibit hematopoietic stem and progenitor cell (HSPC) proliferative and colony-forming ability and promote apoptosis. One mechanism by which AA BM-MSC EVs might contribute to these altered HSPC functions is through microRNAs (miRNAs) encapsulated in EVs. However, little is known about the role of BM-MSC EVs derived miRNAs in regulating HSPC functions in AA. Therefore, we performed miRNA profiling of EVs from BM-MSC of AA (n = 6) and normal controls (NC) (n = 6) to identify differentially expressed miRNAs. The Integrated DEseq2 analysis revealed 34 significantly altered mature miRNAs, targeting 235 differentially expressed HSPC genes in AA. Hub gene analysis revealed 10 HSPC genes such as IGF-1R, IGF2R, PAK1, PTPN1, etc., which are targeted by EV miRNAs and had an enrichment of chemokine, MAPK, NK cell-mediated cytotoxicity, Rap1, PI3k-Akt, mTOR signalling pathways which are associated with hematopoietic homeostasis. We further showed that miR-139-5p and its target, IGF-1R (hub-gene), might regulate HSPC proliferation and apoptosis, which may serve as potential therapeutic targets in AA. Overall, the study highlights that AA BM-MSC EV miRNAs could contribute to impaired HSPC functions in AA.


Assuntos
Anemia Aplástica , Vesículas Extracelulares , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , MicroRNAs , Anemia Aplástica/genética , Anemia Aplástica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Hematopoese/genética , Apoptose/genética , Células da Medula Óssea/metabolismo , Transdução de Sinais
2.
Int J Lab Hematol ; 46(3): 515-522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357712

RESUMO

BACKGROUND: Altered T-cell repertoire with an aberrant T-cell activation and imbalance of the Th17/Treg cells has been reported in acquired aplastic anemia (aAA). miRNAs are well known to orchestrate T-cell activation and differentiation, however, their role in aAA is poorly characterized. The study aimed at identifying the profile of miRNAs likely to be involved in T-cell activation and the Th17/Treg-cell imbalance in aAA, to explore newer therapeutic targets. METHODS: Five milliliters peripheral blood samples from 30 patients of aAA and 15 healthy controls were subjected to flow cytometry for evaluating Th17- and Treg-cell subsets. The differential expression of 7 selected miRNAs viz; hsa-miR-126-3p, miR-146b-5p, miR-155-5p, miR-16, miR-17, miR-326, and miR-181c was evaluated in the PB-MNCs. Expression analysis of the miRNAs was performed using qRT-PCR and fold change was calculated by 2-ΔΔCt method. The alterations in the target genes of deregulated miRNAs were assessed by qRT-PCR. The targets studied included various transcription factors, cytokines, and downstream proteins. RESULTS: The absolute CD3+ lymphocytes were significantly elevated in the PB of aAA patients when compared with healthy controls (p < 0.0035), however, the CD4:CD8 ratio was unperturbed. Th17: Treg-cell ratio was altered in aAA patients (9.1 vs. 3.7%, p value <0.05), which correlated positively with disease severity and the PNH positive aAA. Across all severities of aAA, altered expression of the 07 miRNAs was noted in comparison to controls; upregulation of miR-155 (FC-2.174, p-value-0.0001), miR-146 (FC-2.006, p-value-0.0001), and miR-17 (FC-3.1, p-value-0.0001), and downregulation of miR-126 (FC-0.329, p-value-0.0001), miR-181c (FC-0.317, p-value-0.0001), miR-16 (FC-0.348, p-value-0.0001), and miR-326 (FC-0.334, p-value-0.0001). Target study for these miRNAs revealed an increased expression of transcription factors responsible for Th1 and Th17 differentiation (T-bet, RORϒt, IL-17, IL-6, and IFN-ϒ), T-cell activation (NFκB, MYC, and PIK3R2), downregulation of FOX-P3, and other regulatory downstream molecules like SHIP-1, ETS-1, IRAK-1, TRAF-6, and PTEN. CONCLUSION: The study for the first time highlights the plausible role of different miRNAs in deregulating the Th17/Treg-cell imbalance in aAA, and comprehensively suggest the role of altered NF-kB and mTOR pathways in aAA. The axis may be actively explored for development of newer therapeutic targets in aAA.


Assuntos
Anemia Aplástica , Ativação Linfocitária , MicroRNAs , Linfócitos T Reguladores , Células Th17 , Humanos , MicroRNAs/genética , Células Th17/imunologia , Células Th17/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anemia Aplástica/imunologia , Anemia Aplástica/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Regulação da Expressão Gênica , Idoso , Adolescente
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167025, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237741

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSC) are an integral part of the BM niche that is essential to maintain hematopoietic homeostasis. In aplastic anemia (AA), a few studies have reported phenotypic defects in the BM-MSC, such as reduced proliferation, imbalanced differentiation, and apoptosis; however, the alterations at the molecular level need to be better characterized. Therefore, the current study aims to identify the causative factors underlying the compromised functions of AA BM-MSC that might eventually be contributing to the AA pathobiology. METHODS: We performed RNA sequencing (RNA-Seq) using the Illumina platform to comprehend the distinction between the transcriptional landscape of AA and control BM-MSC. Further, we validated the alterations observed in senescence by Senescence- associated beta-galactosidase (SA -ß-gal) assay, DNA damage by γH2AX staining, and telomere attrition by relative telomere length assessment and telomerase activity assay. We used qRT-PCR to analyze changes in some of the genes associated with these molecular mechanisms. RESULTS: The transcriptome profiling revealed enrichment of senescence-associated genes and pathways in AA BM-MSC. The senescent phenotype of AA BM-MSC was accompanied by enhanced SA -ß-gal activity and elevated expression of senescence associated genes TP53, PARP1, and CDKN1A. Further, we observed increased γH2AX foci indicating DNA damage, reduced telomere length, and diminished telomerase activity in the AA BM-MSC. CONCLUSION: Our results highlight that AA BM-MSC have a senescent phenotype accompanied by other cellular defects like DNA damage and telomere attrition, which are most likely driving the senescent phenotype of AA BM-MSC thus hampering their hematopoiesis supporting properties as observed in AA.


Assuntos
Anemia Aplástica , Células-Tronco Mesenquimais , Telomerase , Humanos , Anemia Aplástica/genética , Anemia Aplástica/metabolismo , Telomerase/genética , Telomerase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Telômero/genética , Reparo do DNA
4.
Metabolomics ; 19(12): 94, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975930

RESUMO

INTRODUCTION: Idiopathic acquired aplastic anemia (AA) is a bone marrow failure disorder where aberrant T-cell functions lead to depletion of hematopoietic stem and progenitor cells in the bone marrow (BM) microenvironment. T-cells undergo metabolic rewiring, which regulates their proliferation and differentiation. Therefore, studying metabolic variation in AA patients may aid us with a better understanding of the T-cell regulatory pathways governed by metabolites and their pathological engagement in the disease. OBJECTIVE: To identify the differential metabolites in BM plasma of AA patients, AA follow-up (AAF) in comparison to normal controls (NC) and to identify potential disease biomarker(s). METHODS: The study used 1D 1H NMR Carr-Purcell-Meiboom-Gill (CPMG) spectra to identify the metabolites present in the BM plasma samples of AA (n = 40), AAF (n = 16), and NC (n = 20). Metabolic differences between the groups and predictive biomarkers were identified by using multivariate analysis and receiver operating characteristic (ROC) module of Metaboanalyst V5.0 tool, respectively. RESULTS: The AA and AAF samples were well discriminated from NC group as per Principal Component analysis (PCA). Further, we found significant alteration in the levels of 17 metabolites in AA involved in amino-acid (Leucine, serine, threonine, phenylalanine, lysine, histidine, valine, tyrosine, and proline), carbohydrate (Glucose, lactate and mannose), fatty acid (Acetate, glycerol myo-inositol and citrate), and purine metabolism (hypoxanthine) in comparison to NC. Additionally, biomarker analysis predicted Hypoxanthine and Acetate can be used as a potential biomarker. CONCLUSION: The study highlights the significant metabolic alterations in the BM plasma of AA patients which may have implication in the disease pathobiology.


Assuntos
Anemia Aplástica , Medula Óssea , Humanos , Medula Óssea/metabolismo , Medula Óssea/patologia , Anemia Aplástica/metabolismo , Anemia Aplástica/patologia , Metabolômica , Espectroscopia de Ressonância Magnética , Biomarcadores , Acetatos , Hipoxantinas
5.
Curr Diabetes Rev ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37867275

RESUMO

Diabetes is a group of diseases marked by poor control of blood glucose levels. Diabetes mellitus (DM) occurs when pancreatic cells fail to make insulin, which is required to keep blood glucose levels stable, disorders, and so on. High glucose levels in the blood induce diabetic effects, which can cause catastrophic damage to bodily organs such as the eyes and lower extremities. Diabetes is classified into many forms, one of which is controlled by hyperglycemia or Diabetic Kidney Disease (DKD), and another that is not controlled by hyperglycemia (nondiabetic kidney disease or NDKD) and is caused by other factors such as hypertension, hereditary. DKD is associated with diabetic nephropathy (DN), a leading cause of chronic kidney disease (CKD) and end-stage renal failure. The disease is characterized by glomerular basement membrane thickening, glomerular sclerosis, and mesangial expansion, resulting in a progressive decrease in glomerular filtration rate, glomerular hypertension, and renal failure or nephrotic syndrome. It is also represented by some microvascular complications such as nerve ischemia produced by intracellular metabolic changes, microvascular illness, and the direct impact of excessive blood glucose on neuronal activity. Therefore, DKD-induced nephrotic failure is worse than NDKD. MicroRNAs (miRNAs) are important in the development and progression of several diseases, including diabetic kidney disease (DKD). These dysregulated miRNAs can impact various cellular processes, including inflammation, fibrosis, oxidative stress, and apoptosis, all of which are implicated during DKD. MiRNAs can alter the course of DKD by targeting several essential mechanisms. Understanding the miRNAs implicated in DKD and their involvement in disease development might lead to identifying possible therapeutic targets for DKD prevention and therapy. Therefore, this review focuses specifically on DKD-associated DN, as well as how in-silico approaches may aid in improving the management of the disease.

6.
Cells ; 12(14): 1845, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37484201

RESUMO

Non-alcoholic steatohepatitis (NASH) is a clinically serious stage of non-alcoholic fatty liver disease (NAFLD). Histologically characterized by hepatocyte ballooning, immune cell infiltration, and fibrosis, NASH, at a molecular level, involves lipid-induced hepatocyte death and cytokine production. Currently, there are very few diagnostic biomarkers available to screen for NASH, and no pharmacological intervention is available for its treatment. In this study, we show that hepatocyte damage induced by lipotoxicity results in the release of extracellular RNAs (eRNAs), which serve as damage-associated molecular patterns (DAMPs) that stimulate the expression of pro-apoptotic and pro-inflammatory cytokines, aggravate inflammation, and lead to cell death in HepG2 cells. Furthermore, the inhibition of eRNA activity by RNase 1 significantly increases cellular viability and reduces NF-kB-mediated cytokine production. Similarly, RNase 1 administration significantly improves hepatic steatosis, inflammatory and injury markers in a murine NASH model. Therefore, this study, for the first time, underscores the therapeutic potential of inhibiting eRNA action as a novel strategy for NASH treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatócitos/metabolismo , Inflamação/patologia , Citocinas
7.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113664

RESUMO

Autophagy and telomere maintenance are two cellular survival processes that show a strong correlation during human ageing and cancer growth, however, their causal relationship remains unclear. In this study, using an unbiased transcriptomics approach, we uncover a novel role of autophagy genes in regulating telomere extension and maintenance pathways. Concomitantly, the pharmacological inhibition of ULK1 (Unc-51 like autophagy activating kinase 1) attenuated human telomerase reverse transcriptase (hTERT) gene expression and telomerase activity in HepG2 cells. Furthermore, the suppression of telomerase activity upon ULK1 inhibition was associated with telomere shortening and onset of cellular senescence in HepG2 cells. These results, thus, demonstrate a direct role of autophagy in maintaining cellular longevity via regulation of telomerase activity, which may have implications in the pathophysiology of ageing and cancers.


Assuntos
Neoplasias , Telomerase , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero
8.
Cell Biol Int ; 46(11): 1970-1976, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35998254

RESUMO

Mesenchymal stromal cells (MSC) regulate hematopoiesis in the bone marrow (BM) niche and extracellular vesicles (EVs) released by BM-MSC are important mediators of the cross-talk between BM-MSC and hematopoietic stem and progenitor cells (HSPC). We have previously demonstrated that BM-MSC of severe aplastic anemia (SAA) patients have an altered expression of hematopoiesis regulatory molecules. In the present study, we observed that CD34+ HSPC when cocultured with BM-MSC EVs from aplastic anemia patients exhibited a significant reduction in colony-forming units (p = .001), cell proliferation (p = .002), and increased apoptosis (p > .001) when compared to coculture with BM-MSC EVs from controls. Collectively, our results highlight that EVs derived from the BM-MSC of SAA patients impair the hematopoiesis supporting function of HSPC.


Assuntos
Anemia Aplástica , Vesículas Extracelulares , Células-Tronco Mesenquimais , Anemia Aplástica/metabolismo , Antígenos CD34/metabolismo , Medula Óssea , Células da Medula Óssea , Células-Tronco Hematopoéticas , Humanos
9.
Int J Lab Hematol ; 42(5): 501-509, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32490599

RESUMO

INTRODUCTION: MicroRNAs (miRNAs) play a critical role in orchestrating T cell differentiation and activation and may thus play a vital role in acquired aplastic anemia (aAA). The study aimed to evaluate the differential expression of selected miRNAs and their relevant target genes in bone marrow samples of aAA patients. METHODS: Differential expression of 8 miRNAs viz; hsa-miR-126-3p, miR-145-5p, miR-155-5p, miR-150-5p, miR-146b-5p, miR-34a, miR-29a, and miR-29b was evaluated in the bone marrow mononuclear cells of aAA patients. TaqMan microRNA assay was performed for preparing the cDNA of specific miRNA, followed by expression analysis using qRT-PCR. Data were normalized using two endogenous controls, RNU6B and RNU48. Delta-delta CT method was used to calculate the fold change (FC) of miRNA expression in individual samples, and a FC of >1.5 was taken as significant. Target genes of these miRNAs were evaluated by qRT-PCR. RESULTS: Thirty five samples of aAA patients and 20 controls were evaluated. Irrespective of the disease severity, five miRNAs were found to be deregulated; miR-126 (FC-0.348; P-value-.0001) and miR-145 (FC-0.31; P-value-.0001) were downregulated, while miR-155 (FC-3.50; P-value-.0067), miR-146 (FC-3.13; P-value-.0105), and miR-150 (FC-5.78; P-value-.0001) were upregulated. Target gene study revealed an upregulation of PIK3R2, MYC, SOCS1, and TRAF-6, and downregulation of MYB. CONCLUSION: This is the first study from the Indian subcontinent demonstrating the presence of altered miRNA expression in the bone marrow samples of aAA patients, suggesting their role in the pathogenesis of the disease. A comprehensive study focusing on the effect of these miRNA-mRNA interactions is likely to open new avenues of management.


Assuntos
Anemia Aplástica/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Adolescente , Adulto , Idoso , Anemia Aplástica/diagnóstico , Sítios de Ligação , Biomarcadores , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Estudos de Casos e Controles , Criança , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA