Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452653

RESUMO

Mycobacterium tuberculosis (Mtb), causative agent of tuberculosis (TB) and non-tubercular mycobacterial (NTM) pathogens such as Mycobacterium abscessus are one of the most critical concerns worldwide due to increased drug-resistance resulting in increased morbidity and mortality. Therefore, focusing on developing novel therapeutics to minimize the treatment period and reducing the burden of drug-resistant Mtb and NTM infections are an urgent and pressing need. In our previous study, we identified anti-mycobacterial activity of orally bioavailable, non-cytotoxic, polycationic phosphorus dendrimer 2G0 against Mtb. In this study, we report ability of 2G0 to potentiate activity of multiple classes of antibiotics against drug-resistant mycobacterial strains. The observed synergy was confirmed using time-kill kinetics and revealed significantly potent activity of the combinations as compared to individual drugs alone. More importantly, no re-growth was observed in any tested combination. The identified combinations were further confirmed in intra-cellular killing assay as well as murine model of NTM infection, where 2G0 potentiated the activity of all tested antibiotics significantly better than individual drugs. Taken together, this nanoparticle with intrinsic antimycobacterial properties has the potential to represents an alternate drug candidate and/or a novel delivery agent for antibiotics of choice for enhancing the treatment of drug-resistant mycobacterial pathogens.


Assuntos
Dendrímeros , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Antibacterianos/farmacologia , Dendrímeros/farmacologia , Preparações Farmacêuticas , Tuberculose/microbiologia
2.
Biochimie ; 220: 67-83, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168626

RESUMO

In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.


Assuntos
Antibacterianos , Bactérias , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Tolerância a Medicamentos , Farmacorresistência Bacteriana , Estresse Oxidativo/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fenótipo
3.
Tuberculosis (Edinb) ; 127: 102054, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33550109

RESUMO

Tuberculosis remains a serious global health problem. BCG is the only prophylactic TB vaccine and it shows variable protective efficacy. Chimeric protein subunit vaccines hold great potential as stand-alone vaccines or heterologous BCG prime boosters. We have designed a protein chimera, PP31, by combining Mtb ESAT-6 family antigen Rv1198 and MoCo biosynthesis family antigen Rv3111. Further, PP31 was extended by addition of latency antigen Rv1813c to yield PP43. Immunization of BALB/c mice with PP31 or PP43 with FIA adjuvant elicited strong humoral immune response. Restimulation of splenocytes of the immunized mice lead to significant proliferation of lymphocytes, secretion of cytokines IFN-γ, TNF, IL-2 of the Th1 class, IL-17A of the Th17 class, and IL-6. PP31 and PP43 also induced intracellular cytokine expression (IFN-γ, TNF, and IL-2) from both CD4+-CD44high and CD8+-CD44high T-cells. Antigen-specific IFN-γ+/IL-2+ double positive CD4+ T-cells were significantly higher in case of PP43 than PP31-immunized mice and control group. PP43 showed protection equivalent to heat-inactivated BCG in response to challenge of the immunized mice with Mtb H37Ra. Based on its immunogenicity and protective efficacy, PP43 appears to be a potential candidate for further development as a subunit vaccine against TB.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Epitopos , Imunogenicidade da Vacina , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Tuberculose/sangue , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
4.
Mitochondrion ; 57: 241-256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279599

RESUMO

Mycobacterium tuberculosis (Mtb) employs diverse strategies to survive inside the host macrophages. In this study, we have identified a conserved hypothetical protein of Mtb; Rv0674, which is present in the mitochondria of the host cell. The genetic knock-out of rv0674 (Mtb-KO) showed increased growth of Mtb. The intracellular infection with recombinant Mycobacterium smegmatis (MSMEG) expressing Rv0674 (MS_Rv0674), established that the protein is involved in promoting the apoptotic cell death of the macrophage. To investigate the mechanism incurred in mitochondria, we observed that the protein physically interacts with the control region (D-loop) of the mitochondrial DNA (LSP and HSP promoters of the loop) of the macrophages and facilitates the increased expression of mRNA in all the complexes of mitochondrial encoded OXPHOS subunits. The changes in OXPHOS levels corroborated with the ATP synthesis, mitochondrial membrane potential and superoxide production. The infection with MS_Rv0674 confirmed the role of this protein in effecting the intracellular infection. The fluorescent and confocal microscopy confirmed that the protein is localized in the mitochondria of infected macrophages and in the cells of BAL of TB patients. Together these findings indicate towards the novel function of the protein which is unlike to the earlier established mechanisms of mycobacterial physiology.


Assuntos
Proteínas de Bactérias/genética , DNA Mitocondrial/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Mycobacterium tuberculosis/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , DNA Mitocondrial/química , Técnicas de Inativação de Genes , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Modelos Moleculares , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Transporte Proteico
5.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140470, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535275

RESUMO

Mycobacterium is known for subverting the host defense machinery, and one such mechanism is the inhibition of autophagy. Here, we have demonstrated that Mycobacterium tuberculosis (MTB) secretes a virulence factor; an early secretory antigenic target protein (ESAT-6) into the phagosome, which induces the expression and activity of mitochondrial superoxide dismutase (SOD-2) of macrophages. Using a series of experiments, and Mycobacterium bovis BCG as a model strain (where ESAT-6 protein is not expressed), we have delineated that the protein regulates SOD-2 of macrophages. The expression and augmentation of SOD-2 activity were confirmed by either incubating the macrophages with ESAT-6 protein, transfection of macrophage by esat6 gene using a eukaryotic promoter vector, or by infection with different mycobacterial strains. The induction of acidification of phagosomal compartment containing bacteria was observed in cells that express low levels of SOD-2. This was further confirmed by observing a significant decrease in the M. bovis BCG intracellular load in the sod-2 knocked-down macrophages.


Assuntos
Antígenos de Bactérias/metabolismo , Autofagia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Mycobacterium bovis/fisiologia , Superóxido Dismutase/metabolismo , Animais , Autofagossomos , Linhagem Celular , Ativação Enzimática , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Viabilidade Microbiana , Recombinação Genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Biochimie ; 165: 156-160, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377193

RESUMO

Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase (PtpA) has so far been known to control intracellular survival of mycobacteria; whereas the ATP synthase which is essential for mycobacterial growth has recently been contemplated in developing a breakthrough anti-TB drug, diarylquinoline. Since both of these enzymes have been established as validated drug targets; we report a robust and functional relationship between these two enzymes through a series of experiments using Mtb H37Ra. In the present study we report that the mycobacterial ATP synthase alpha subunit is regulated by PtpA. We generated gene knock-out for the enzyme PtpA and subjected to determine the mycobacterial replication and the proteome profile of wild type, mutant (ΔptpA) and complemented (ΔptpA:ptpA) strains of Mtb H37Ra. A substantial amount of decrease in the protein level of ATP synthase alpha subunit (AtpA) in case of mutant H37Ra was observed, while the levels of the enzyme were either increased or remained unchanged, in wild type and in the complemented strains.


Assuntos
Proteínas de Bactérias/fisiologia , ATPases Bacterianas Próton-Translocadoras/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Tirosina Fosfatases/fisiologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Diarilquinolinas/farmacologia , Técnicas de Inativação de Genes , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Proteínas Tirosina Fosfatases/genética
7.
Immunol Lett ; 209: 67-74, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30898660

RESUMO

Tuberculosis (TB) is a highly infectious disease and its early and precise diagnosis is essential to reduce morbidity and mortality of patients. Since the routine diagnostic tests (like Monteux, AFB smear microscopy, chest X-Ray) do not give infallible results, additional tests are always recommended. Therefore to address the concerns about non-specificity of the present battery of diagnostic tests, we have attempted to analyze some unique secretory antigens which could be able to identify the stage specific infection of MTB. In this study, we have used recombinant proteins CFP-10, ESAT-6, Ag85 A, Ag85B, Ag85C, PE3, PE4 and Mycp1 to eliminate heterogeneity and cross reactivity in clinical diagnosis. Amplified genes were cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinantly purified proteins were used as antigens against 158 sera samples of TB patients. Secretory proteins showed better response than the PPD control. Among all the used antigens PE3 and PE4 proteins showed better reactivity levels among all the groups of TB patients. The secretions of CFP-10 and ESAT-6 were also higher as compared to other secretory proteins like Ag85 A, Ag85B, Ag85C and MycP1.The clinical use of these newly identified secretory antigens could be of significant value for the confirmatory, rapid, simple and low-cost diagnosis of TB patients.


Assuntos
Mycobacterium tuberculosis , Tuberculose/diagnóstico , Tuberculose/metabolismo , Adulto , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Testes Sorológicos , Tuberculose/imunologia , Tuberculose/microbiologia , Fatores de Virulência , Adulto Jovem
8.
Chem Biol Drug Des ; 94(1): 1330-1338, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30805971

RESUMO

The correlation of mycobactericidal property of macrophages with its potential to deliver bacteria to hydrolytic lysosomes, augmented with ubiquitin-derived peptides (Ub2), activates the process of autophagy. This leads to the formation of phagolysosomes supported by factor involving increased cationic charges which regulate the acidic pH causing elimination of Mycobacterium. To better understand this interaction of cationic-rich ubiquitin-derived peptides with mycobacteria and to identify putative mycobacterial intrinsic resistance mechanisms for phagolysosome formation, we have synthesized a new series of Ub2 peptides, wherein the Gly residues are replaced with azaGly with the aim to improve metabolic stability. In addition to that a new methodology is reported for the synthesis of heteroaryl tethered peptides using azaGly as a linker. We have demonstrated that positive puncta (directly proportional to the acidification of lysosome) in cytosol was significantly increased after 6 hours on the treatment of macrophage with Ub2 peptide derivatives (1, 6, 10, and 11) causing the higher intensity of lysosome observed through LysoTracker Red Dye. The circular dichroism spectral studies are carried out in water and water:TFE mixture and demonstrated that the Ub2 peptides have helix-forming tendency in the presence of TFE. The recognizable intracellular killing of Mycobacterium tuberculosis by Ub2 peptides provides a new approach for host-directed therapy.


Assuntos
Antituberculosos/síntese química , Peptídeos/química , Ubiquitina/química , Sequência de Aminoácidos , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Compostos Aza/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Lisossomos/química , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Estrutura Secundária de Proteína
9.
J Drug Target ; 27(1): 51-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724125

RESUMO

Phosphorylation and dephosphorylation are the key mechanisms for mycobacterial physiology and play critical roles in mycobacterial survival and in its pathogenesis. Mycobacteria evade host immune mechanism by inhibiting phagosome - lysosome fusion in which mycobacterial protein tyrosine phosphatase A (PtpA;TP) plays an indispensable role. Tyrosine kinase (PtkA;TK) activated by autophosphorylation; phosphorylates TP, which subsequently leads to increase in its phosphatase activity. The phosphorylated TP is secreted in phagosome of macrophage. In the present study, we have shown that the phosphorylation at two sites of TP; Y128 and Y129 are critical for TK-mediated phosphatase activity. The disruption of this interaction between TK and TP inhibits activation of later which further leads to the decrease in intracellular survival of mycobacteria. Furthermore, the proof of concept has been established using benzylbenzofurans and benzofuranamides, which inhibit the growth and intracellular survival of mycobacteria, associate with the functional sites of TP and contend with the TK. This binding was further restated by looking at the anchorage of protein-protein and the protein-inhibitor complexes in the homology-based structure models and by surface plasmon resonance analysis.


Assuntos
Antibacterianos/farmacologia , Benzofuranos/farmacologia , Mycobacterium/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Amidas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/efeitos dos fármacos , Benzofuranos/química , Macrófagos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ressonância de Plasmônio de Superfície
10.
Biochem J ; 475(21): 3393-3416, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30266832

RESUMO

Rv3488 of Mycobacterium tuberculosis H37Rv has been assigned to the phenolic acid decarboxylase repressor (PadR) family of transcriptional regulators that play key roles in multidrug resistance and virulence of prokaryotes. The binding of cadmium, zinc, and several other metals to Rv3488 was discovered and characterized by isothermal titration calorimetery to be an exothermic process. Crystal structures of apo-Rv3488 and Rv3488 in complex with cadmium or zinc ions were determined by X-ray crystallography. The structure of Rv3488 revealed a dimeric protein with N-terminal winged-helix-turn-helix DNA-binding domains composed of helices α1, α2, α3, and strands ß1 and ß2, with the dimerization interface being formed of helices α4 and α1. The overall fold of Rv3488 was similar to PadR-s2 and metal sensor transcriptional regulators. In the crystal structure of Rv3488-Cd complex, two octahedrally coordinated Cd2+ ions were present, one for each subunit. The same sites were occupied by zinc ions in the structure of Rv3488-Zn, with two additional zinc ions complexed in one monomer. EMSA studies showed specific binding of Rv3488 with its own 30-bp promoter DNA. The functional role of Rv3488 was characterized by expressing the rv3488 gene under the control of hsp60 promoter in Mycobacterium smegmatis Expression of Rv3488 increased the intracellular survival of recombinant M. smegmatis in murine macrophage cell line J774A.1 and also augmented its tolerance to Cd2+ ions. Overall, the studies show that Rv3488 may have transcription regulation and metal-detoxifying functions and its expression in M. smegmatis increases intracellular survival, perhaps by counteracting toxic metal stress.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cristalografia por Raios X , Metais/química , Metais/metabolismo , Camundongos , Modelos Moleculares , Mycobacterium/classificação , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Coelhos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA