Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Pharm ; 659: 124238, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38768692

RESUMO

Burn wounds (BWs) with extensive blood loss, along with bacterial infections and poor healing, may become detrimental and pose significant rehabilitation obstacles in medical facilities. Therefore, the freeze-drying method synthesized novel hemocompatible chitosan, gelatin, and hyaluronic acid infused with graphene oxide-silymarin (CGH-SGO) hybrid constructs for application as a BW patch. Most significantly, synthesized hybrid constructs exhibited an interconnected-porous framework with precise pore sizes (≈118.52 µm) conducive to biological functions. Furthermore, the FTIR and XRD analyses document the constructs' physiochemical interactions. Similarly, enhanced swelling ratios, adequate WVTR (736 ± 78 g m-2 hr-1), and bio-degradation rates were seen during the physiological examination of constructs. Following the in vitro investigations, SMN-GO added to constructs improved their anti-bacterial (against E.coli and S. aureus), anti-oxidant, hemocompatible, and bio-compatible characteristics in conjunction with prolonged drug release. Furthermore, in vivo, implanting constructs on wounds exhibited significant acceleration in full-thickness burn wound (FT-BW) healing on the 14th day (CGH-SGO: 95 ± 2.1 %) in contrast with the control (Gauze: 71 ± 4.2 %). Additionally, contrary to gauze, the in vivo rat tail excision model administered with constructs assured immediate blood clotting. Therefore, CGH-SGO constructs with an improved porous framework, anti-bacterial activity, hemocompatibility, and biocompatibility could represent an attractive option for healing FT-BWs.


Assuntos
Antibacterianos , Queimaduras , Quitosana , Gelatina , Grafite , Ácido Hialurônico , Cicatrização , Ácido Hialurônico/química , Quitosana/química , Quitosana/administração & dosagem , Queimaduras/tratamento farmacológico , Queimaduras/terapia , Gelatina/química , Animais , Grafite/química , Grafite/administração & dosagem , Cicatrização/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Masculino , Ratos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Ratos Wistar , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/química
2.
Int J Biol Macromol ; 270(Pt 1): 132269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744363

RESUMO

Burn wounds (BWs) cause impairment of native skin tissue and may cause significant microbial infections that demand immediate care. Curcumin (Cur) and quercetin (Que) exhibit antimicrobial, hemocompatibility, ROS-scavenging, and anti-inflammatory properties. However, its instability, water insolubility, and low biological fluid absorption render it challenging to sustain local Cur and Que doses at the wound site. Therefore, to combat these limitations, we employed blow-spinning and freeze-drying to develop a multi-layered, Cur/Que-loaded gelatin/chitosan/PCL (GCP-Q/C) nanofibroporous (NFP) matrix. Morphological analysis of the NFP-matrix using SEM revealed a well-formed multi-layered structure. The FTIR and XRD plots demonstrated dual-bioactive incorporation and scaffold polymer interaction. Additionally, the GCP-Q/C matrix displayed high porosity (82.7 ± 2.07 %), adequate pore size (∼121 µm), enhanced water-uptake ability (∼675 % within 24 h), and satisfactory biodegradation. The scaffolds with bioactives had a long-term release, increased antioxidant activity, and were more effective against gram-positive (S. aureus) and gram-negative (E. coli) bacteria than the unloaded scaffolds. The in vitro findings of GCP-Q/C scaffolds showed promoted L929 cell growth and hemocompatibility. Additionally, an in vivo full-thickness BW investigation found that an implanted GCP-Q/C matrix stimulates rapid recuperation and tissue regeneration. In accordance with the findings, the Gel/Ch/PCL-Que/Cur NFP-matrix could represent an effective wound-healing dressing for BWs.


Assuntos
Queimaduras , Curcumina , Nanofibras , Quercetina , Cicatrização , Curcumina/farmacologia , Curcumina/química , Cicatrização/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Animais , Porosidade , Nanofibras/química , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Gelatina/química , Camundongos , Alicerces Teciduais/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Liberação Controlada de Fármacos
3.
Environ Sci Pollut Res Int ; 30(43): 98048-98062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37599345

RESUMO

The discovery of unexplored, robust microalgal strains will assist in treating highly polluted industrial effluent, including petroleum effluent. In the current analysis, a newly isolated microalgal strain, Diplosphaera mucosa VSPA, was used to treat petroleum effluent in a lab-scale raceway bioreactor. Its treatment efficiency was compared with a well-known species, Chlorella pyrenoidosa. The D. mucosa VSPA strain proliferated in petroleum effluent at a high growth rate, with final biomass, and lipid concentrations reaching 6.93 g/L and 2.72 g/L, respectively. Treatment efficiency was calculated based on the final removal efficiency of ammonium nitrogen, phosphate phosphorus, and chemical oxygen demand, which was more than 90%. Control experiments suggested that the maximum removal of pollutants from petroleum effluent was due to microalgae growth. Some growth models, including the Gompertz, Logistic, Stannard, Richard, and Schnute, were used to simulate the experimental data, verifying the results. Good fitting of all models was obtained, with the R2 value reaching more than 0.90. The development of a suitable model can help in decreasing the efforts required for the scale-up of the process.


Assuntos
Chlorella , Clorofíceas , Microalgas , Petróleo , Biomassa , Lipídeos
4.
Bioresour Technol ; 387: 129619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37549715

RESUMO

The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 µmol m-2 s-1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.


Assuntos
Pisos e Cobertura de Pisos , Águas Residuárias , Indústria Têxtil , Redes Neurais de Computação , Mucosa , Algoritmos
5.
J Biosci Bioeng ; 136(3): 232-238, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393187

RESUMO

Hyaluronic acid (HA), an anionic, non-sulfated glycosaminoglycan, has several clinical applications. This study examines several downstream methods for purifying HA with maximum recovery and purity. Following the fermentation of Streptococcus zooepidemicus MTCC 3523 to produce HA, the broth was thoroughly purified to separate cell debris and insoluble impurities using a filtration procedure and a variety of adsorbents for soluble impurities. Nucleic acids, proteins with high molecular weight, were successfully removed from the broth using activated carbons and XAD-7 resins. In contrast, insoluble and low molecular weight impurities were removed using diafiltration, with HA recovery of 79.16% and purity close to 90%. Different analytical and characterization procedures such as Fourier transform-infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy validated the presence, purity, and structure of HA. Microbial HA showed activity in tests for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging (4.87 ± 0.45 kmol TE/g), total antioxidant capacity (13.32 ± 0.52%), hydroxyl radical-scavenging (32.03 ± 0.12%), and reducing power (24.85 ± 0.45%). The outcomes showed that the precipitation, adsorption, and diafiltration processes are suitable for extracting HA from a fermented broth under the chosen operating conditions. The HA produced was of pharmaceutical grade for non-injectable applications.


Assuntos
Streptococcus equi , Ácido Hialurônico/biossíntese , Ácido Hialurônico/isolamento & purificação , Ácido Hialurônico/farmacologia , Biotecnologia , Antioxidantes/farmacologia
6.
3 Biotech ; 13(7): 235, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37323856

RESUMO

The current study investigated the potential of one less explored microalgae species, Diplosphaera mucosa VSPA, for treating carpet and textile effluent in a conventionally designed 10 L bubble column photobioreactor. To the best of our knowledge, this is the first study to evaluate COD (chemical oxygen demand) removal efficiency by microalgae in carpet effluent. To evaluate D. mucosa VSPA's potential, its growth and bioremediation efficacy were compared to those of a well-known strain, Chlorella pyrenoidosa. D. mucosa VSPA outperformed C. pyrenoidosa in both effluents, with the highest biomass concentration reaching 4.26 and 3.98 g/L in carpet and textile effluent, respectively. D. mucosa VSPA also remediated 94.0% of ammonium nitrogen, 71.6% of phosphate phosphorus, and 91.9% of chemical oxygen demand in carpet effluent, approximately 10% greater than that of C. pyrenoidosa. Both species also removed more than 65% of colour from both effluents, meeting the standard set by governing bodies. Microalgae growth and substrate removal patterns in the photobioreactor were simulated using photobiotreatment and the Gompertz model. Simulation results revealed that photobiotreatment was the better-fit model, concluded based on the coefficient of regression value and the second-order Akaike information criterion test. Modelling studies can assist in increasing the performance and scale-up of the photobioreactor. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03655-3.

7.
Biosens Bioelectron ; 231: 115285, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058958

RESUMO

As a full-fidelity simulation of human cells, tissues, organs, and even systems at the microscopic scale, Organ-on-a-Chip (OOC) has significant ethical advantages and development potential compared to animal experiments. The need for the design of new drug high-throughput screening platforms and the mechanistic study of human tissues/organs under pathological conditions, the evolving advances in 3D cell biology and engineering, etc., have promoted the updating of technologies in this field, such as the iteration of chip materials and 3D printing, which in turn facilitate the connection of complex multi-organs-on-chips for simulation and the further development of technology-composite new drug high-throughput screening platforms. As the most critical part of organ-on-a-chip design and practical application, verifying the success of organ model modeling, i.e., evaluating various biochemical and physical parameters in OOC devices, is crucial. Therefore, this paper provides a logical and comprehensive review and discussion of the advances in organ-on-a-chip detection and evaluation technologies from a broad perspective, covering the directions of tissue engineering scaffolds, microenvironment, single/multi-organ function, and stimulus-based evaluation, and provides a more comprehensive review of the progress in the significant organ-on-a-chip research areas in the physiological state.


Assuntos
Técnicas Biossensoriais , Sistemas Microfisiológicos , Animais , Humanos , Organoides , Engenharia Tecidual , Microfluídica , Dispositivos Lab-On-A-Chip
9.
Appl Biochem Biotechnol ; 195(11): 7132-7157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36961510

RESUMO

The manufacture, purification, and applications of hyaluronic acid (HA) are discussed in this article. Concerning the growing need for affordable, high-quality HA, it is essential to consider diverse production techniques using renewable resources that pose little risk of cross-contamination. Many microorganisms can now be used to produce HA without limiting the availability of raw materials and in an environmentally friendly manner. The production of HA has been associated with Streptococci A and C, explicitly S. zooepidemicus and S. equi. Different fermentation techniques, including the continuous, batch, fed-batch, and repeated batch culture, have been explored to increase the formation of HA, particularly from S. zooepidemicus. The topic of current interest also involves a complex broth rich in metabolites and residual substrates, intensifying downstream processes to achieve high recovery rates and purity. Although there are already established methods for commercial HA production, the anticipated growth in trade and the diversification of application opportunities necessitate the development of new procedures to produce HA with escalated productivity, specified molecular weights, and purity. In this report, we have enacted the advancement of HA technical research by analyzing bacterial biomanufacturing elements, upstream and downstream methodologies, and commercial-scale HA scenarios.


Assuntos
Ácido Hialurônico , Streptococcus equi , Ácido Hialurônico/química , Streptococcus equi/metabolismo , Fermentação , Peso Molecular
10.
Biotechnol Genet Eng Rev ; : 1-41, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596226

RESUMO

Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.

11.
Front Chem ; 10: 1051678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518978

RESUMO

Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.

12.
3 Biotech ; 12(11): 316, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36276437

RESUMO

Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.

13.
Biomed Mater ; 17(6)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36113451

RESUMO

Graphene oxide (GO) offers a distinct opportunity in the field of biomedical engineering owing to its exceptionally high mechanical strength, excellent electrical conductivity, high optical transparency, and favorable biocompatibility. In this article, nanocomposite biocompatible GO-based scaffolds (chitosan/gelatin/nanobioglass/GO) Ch-G-NBG-GO were successfully fabricated through freeze drying technique (-40 °C) and evaluated for various physico-chemical and biological properties. The prepared Ch-G-NBG-GO composites have been investigated for their structural, physiochemical, and surface morphology via x-ray diffraction (XRD), high resolution scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), energy-dispersive x-ray Spectroscopy and, differential scanning colorimetry (DSC) respectively. The morphological analysis showed the porous interconnected network of scaffold formed. Average pore size for the Ch-G-NBG-GO scaffolds were in between 90 and 120 µm, which was very close to the control scaffolds. XRD data revealed the successful incorporation of NBG and GO and distribution across the scaffolds. Porosity of the fabricated scaffolds were in the range between 75.3% and 77.3% which was very close to the control scaffold with 79% porosity. The studies also reveal that after GO incorporation, the weight loss reduced (0.11 ± 0.02-0.095 ± 0.03), scaffolds were firmly stable at room temperature even after a long duration of 28 d. The crystallinity added to the scaffolds due to addition of GO nanoparticles improved the mechanical strength of these scaffolds. The compressive modulus changed from (5.7 to 8.51) MPa after GO addition. Swelling ratio changed drastically especially in case of Ch-NBG-90%GO (4.9 ± 0.04-4 ± 0.01). DSC and TGA data revealed the thermal stability of GO incorporated scaffolds due to the proper interaction between GO/NBG with chitosan-gelatin blend. The scaffold's potential for bone tissue engineering was evaluated by testing its cytocompatibility for MG-63 cell line. It revealed suitable cell attachment and proliferation of cells compared to the Ch-G-NBG scaffold. MTT assay showed that Ch-G-NBG-GO scaffold below 90% GO concentration possess best biocompatibility. But in case of Ch-G-NBG-90%GO scaffold, the cell proliferation was reduced when compared to control scaffolds. Alkaline phosphatase activity suggested improved osteogenic differentiation of MG-63 cells over GO based scaffolds and this was due to the osteogenic potential of NBG and GO present in the scaffolds. Based on these results, the nano-biocomposite scaffold appears to have the potential for utilization in bone tissue restoration, replacement and regeneration.


Assuntos
Quitosana , Fosfatase Alcalina , Regeneração Óssea , Osso e Ossos , Quitosana/química , Gelatina/química , Grafite , Osteogênese , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
3 Biotech ; 12(9): 208, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35935546

RESUMO

Hyaluronic acid is a polysaccharide endowed with distinctive biological and physiological competencies. Given its queer properties, hyaluronic acid has exclusive praxis in the cosmetics and medical industries. The surmounting demand for hyaluronic acid is the propulsion behind the necessity for finding the amenable ways for its production. Fermentation progression of Streptococcus zooepidemicus is reckoned as the superlative prompt and ambient approach for hyaluronic acid fabrication. For the unabated advancements in the industrial production of hyaluronan, industrial byproducts utilization is a fateful stile. The recent perusal is to optimize the fermentation production conditions of hyaluronic acid using cane molasses (a byproduct of sugar production) as a carbon source. The impact of different ranges of temperatures (33-41 °C), pH (6-8), and agitation rates (100-250 rpm) on the production process was calibrated using RSM using CCD as a statistical modality. In a 3.7 L bioreactor, 3.31 g/L hyaluronic acid was achieved at 9.74 percent molasses, 36.2 °C, pH 6.46, and a 207 rpm agitation rate using a batch fermentation technique. With a pH of 7, HPLC was conducted at 25 °C using a C18 column at a rate of 0.8 ml/min, and the wavelength was determined using a UV detector. The average retention time was 2.202 min. The FT-IR spectrum's output was also observed, and it matched the standard hyaluronic acid well.

15.
Int J Biol Macromol ; 203: 389-405, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063489

RESUMO

Over the past decades, various attempts have been made to develop suitable tissue-engineered constructs to repair or regenerate the damaged or diseased articular cartilage. In the present study, we embedded Platelet rich plasma (PRP)/Sodium Alginate (SA) based hydrogel in porous 3D scaffold of chitosan (CH)/chondroitin sulfate (CS)/silk fibroin (SF) to develop hybrid scaffold for cartilage tissue construct generation with abilities to support shape recovery potential, facilitate uniform cells distribution and mimic gel like cartilage tissue extracellular matrix.The developed hybrid matrix shows suitable pore size (55-261 µm), porosity (77 ± 4.3%) and compressive strength (0.13 ± 0.04 MPa) for cartilage tissue construct generation and its applications. The developed SA/PRP-based cartilage construct exhibits higher metabolic activity, glycosaminoglycan deposition, expression of collagen type II, and aggrecan in comparison to SA based cell-scaffold construct. In-vivo animal study was also performed to investigate the biocompatibility and cartilage tissue regeneration potential of the developed construct. The obtained gross analysis of knee sample, micro-computed tomography, and histological analysis suggest that implanted tissue construct possess the superior potential to regenerate hyaline cartilage defect of thickness around 1.10 ± 0.36 mm and integrate with surrounding tissue at the defect site. Thus, the proposed strategy for the development of cartilage tissue constructs might be beneficial for the repair of full-thickness knee articular cartilage defects.


Assuntos
Cartilagem Articular , Plasma Rico em Plaquetas , Alginatos , Animais , Cartilagem Articular/patologia , Condrócitos , Hidrogéis , Porosidade , Engenharia Tecidual , Alicerces Teciduais , Microtomografia por Raio-X
16.
Int J Low Extrem Wounds ; : 15347346221074161, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037502

RESUMO

Wound healing is a complex, highly regulated process that is important in sustaining the skin barrier function. The etiologic relation of specific metals is not adequately described for chronic non-healing wounds. The aim of this study was to estimate heavy and trace metals in chronic non-healing wound and their association with wound healing. The levels of zinc, selenium, copper, magnesium, chromium, cadmium, iron, and lead were estimated in serum of chronic non-healing wound patients using atomic absorption spectrophotometry. The tests were carried out in 50 patients with chronic non-healing wound and thirty healthy volunteers as control. The serum levels of elements namely zinc, selenium, copper, magnesium, and chromium were significantly reduced in chronic non-healing wounds (P < .001) as compared to control. Lead and cadmium levels had shown the significantly increasing trend in chronic non-healing wound cases (P < .001). The present study demonstrated a significant decrease in serum, levels of selenium, zinc, copper, magnesium, iron, and chromium levels in patients with chronic non-healing wound indicating an association between these elements and wound healing. To summarize the findings of our research, hence trace elements were decreasing in chronic non-healing wound patients suggesting their role in wound healing.

17.
Parasit Vectors ; 14(1): 290, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051831

RESUMO

The 2018 Asia Pacific Malaria Elimination Network's Vector Control Working Group (APMEN VCWG) annual meeting took place 3-5 September 2018 in Bangkok, Thailand. It was designed to be a forum for entomology and public health specialists from APMEN country programmes (over 90 participants from 30 countries) to discuss current progress and challenges related to planning, implementing, and sustaining effective vector control (VC) strategies for malaria elimination across the region, and to suggest practical and applicable solutions to these moving forward. The meeting was organised as a joint collaboration between the VCWG host institution-Faculty of Tropical Medicine, Mahidol University, Thailand-and leading partner institutions within the VCWG: Malaria Consortium and the Malaria Elimination Initiative at the University of California, San Francisco, Global Health Group (UCSF Global Health Group), under the leadership of the APMEN Director and VCWG Co-Chairs from ministries of health in Malaysia and India. This report provides an introduction to the role and nature of the VCWG, highlights key themes and topics presented and discussed at the meeting, and outlines the future objectives and focal areas for the VCWG and APMEN at large.


Assuntos
Conhecimento , Malária/prevenção & controle , Malária/transmissão , Animais , Comportamento Animal , Vetores de Doenças , Entomologia , Monitoramento Ambiental , Humanos , Índia , Resistência a Inseticidas , Malásia , Saúde Pública , Tailândia
18.
Indian J Orthop ; 55(3): 741-748, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33995882

RESUMO

OBJECTIVE: To evaluate the role of composite (Chitosan/Chondroitin sulphate/gelatin/nano-bioglass) scaffold in the union of critical size bone defect created in the rabbit's ulna. METHODS: The composite (Chitosan/Chondroitin sulphate/gelatin/nano-bioglass) scaffold was fabricated using the freeze-drying technique under standard laboratory conditions. The scaffold was cut into the appropriate size and transferred into the defect created (critical bone size defect 1 cm) over the right ulna in the rabbit. The scaffold was not implanted on the left side thus the left side ulna served as control. Results were assessed on serial radiological examination. Rabbits were sacrificed at 20 weeks for histopathological examination (Haematoxylin-Eosin staining and Mason's trichrome staining) and scanning electron microscope observation. Radiological scoring was done by Lane and Sandhu's scoring. RESULTS: Among 12 rabbits, 10 could complete the follow-up. Among those 10 rabbits, 8 among the test group showed good evidence of bone formation at the gap non-union scaffold implanted site. Histological evidence of new bone formation, collagen synthesis, scaffold resorption, minimal chondrogenesis was evident by 20 weeks in the test group. Two rabbits had poor bone formation. CONCLUSION: The chitosan-chondroitin sulphate-gelatin-nano-bioglass composite scaffold is efficient in osteoconduction and osteoinduction in the gap non-union model as it is biocompatible, bioactive, and non-immunogenic as well.

20.
3 Biotech ; 11(4): 160, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33758738

RESUMO

A novel ciprofloxacin-loaded collagen-chitosan scaffold was developed for the treatment of wound using freeze drying method. The average pore size and porosity of developed scaffold was found to be around 125 µm and 91 ± 0.56%. Moreover, swelling, degradation and mechanical tests profile supported the suitability of scaffold for wound healing process. The scaffold has high degree of hemocompatibility towards the blood and promotes the growth, migration and proliferation of fibroblast. The developed scaffold exhibits antibacterial properties and was found to be efficient against the Gram-negative (E.coli) and Gram-positive (Staphylococcus aureus) bacteria hence can be used for wound healing applications. In vivo study demonstrated that the scaffold not only escalated the tissue regeneration time but also accelerated the wound healing process compared to control. The histological studies revealed better granulation, vascularization, and remodeling of extracellular matrix along with regeneration of epidermal and dermal layer of skin. Overall, the obtained results suggested that the developed skin tissue constructs possess the enormous potential for tissue regeneration and might be a suitable biomaterial for skin tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA