Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nat Commun ; 15(1): 4259, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769334

RESUMO

Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82-0.84) and a balanced accuracy of 0.78 (95% CI 0.77-0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40-0.74). Quantitative PCR validated LEF1-AS1's adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.


Assuntos
COVID-19 , Mortalidade Hospitalar , Aprendizado de Máquina , RNA Longo não Codificante , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/virologia , COVID-19/genética , Masculino , Feminino , Idoso , RNA Longo não Codificante/genética , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Europa (Continente)/epidemiologia , Canadá/epidemiologia , Estudos de Coortes , Idoso de 80 Anos ou mais , Adulto
2.
J Mol Cell Cardiol ; 192: 48-64, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734060

RESUMO

INTRODUCTION: Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS: We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS: Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION: These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.


Assuntos
Linfócitos B , Infarto do Miocárdio , Miocárdio , Análise de Sequência de RNA , Análise de Célula Única , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Humanos , Animais , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Imunidade Adaptativa/genética , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma/genética , Transcrição Gênica , Estudo de Associação Genômica Ampla
3.
Infect Dis Model ; 9(2): 569-600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558959

RESUMO

This study introduces a novel SI2HR model, where "I2" denotes two infectious classes representing asymptomatic and symptomatic infections, aiming to investigate and analyze the cost-effective optimal control measures for managing COVID-19. The model incorporates a novel concept of infectious density-induced additional screening (IDIAS) and accounts for treatment saturation. Furthermore, the model considers the possibility of reinfection and the loss of immunity in individuals who have previously recovered. To validate and calibrate the proposed model, real data from November-December 2022 in Hong Kong are utilized. The estimated parameters obtained from this calibration process are valuable for prediction purposes and facilitate further numerical simulations. An analysis of the model reveals that delays in screening, treatment, and quarantine contribute to an increase in the basic reproduction number R0, indicating a tendency towards endemicity. In particular, from the elasticity of R0, we deduce that normalized sensitivity indices of baseline screening rate (θ), quarantine rates (γ, αs), and treatment rate (α) are negative, which shows that delaying any of these may cause huge surge in R0, ultimately increases the disease burden. Further, by the contour plots, we note the two-parameter behavior of the infectives (both symptomatic and asymptomatic). Expanding upon the model analysis, an optimal control problem (OCP) is formulated, incorporating three control measures: precautionary interventions, boosted IDIAS, and boosted treatment. The Pontryagin's maximum principle and the forward-backward sweep method are employed to solve the OCP. The numerical simulations highlight that enhanced screening and treatment, coupled with preventive interventions, can effectively contribute to sustainable disease control. However, the cost-effectiveness analysis (CEA) conducted in this study suggests that boosting IDIAS alone is the most economically efficient and cost-effective approach compared to other strategies. The CEA results provide valuable insights into identifying specific strategies based on their cost-efficacy ranking, which can be implemented to maximize impact while minimizing costs. Overall, this research offers significant insights for policymakers and healthcare professionals, providing a framework to optimize control efforts for COVID-19 or similar epidemics in the future.

4.
Nat Rev Cardiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499868

RESUMO

The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.

5.
Mol Ther Nucleic Acids ; 35(1): 102085, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38192612

RESUMO

RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.

6.
Sci Total Environ ; 916: 170013, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242452

RESUMO

Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.


Assuntos
Nanoestruturas , Eliminação de Resíduos , Poluentes do Solo , Animais , Humanos , Solo , Esgotos , Ecossistema , Alimentos , Poluentes do Solo/análise , Meio Ambiente , Aditivos Alimentares , Água
7.
Adv Space Res ; 73(2): 1331-1348, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250579

RESUMO

The identification of crop diversity in today's world is very crucial to ensure adaptation of the crop with changing climate for better productivity as well as food security. Towards this, Hyperspectral Remote Sensing (HRS) is an efficient technique based on imaging spectroscopy that offers the opportunity to discriminate crop types based on morphological as well as physiological features due to availability of contiguous spectral bands. The current work utilized the benefits of Airborne Visible Infrared Imaging spectrometer- New Generation (AVIRIS-NG) data and explored the techniques for classification and identification of crop types. The endmembers were identified using the Geo-Stat Endmember Extraction (GSEE) algorithm for pure pixels identification and to generate the spectral library of the different crop types. Spectral feature comparison was done among AVIRIS-NG, Analytical Spectral Device (ASD)-Spectroradiometer and Continuum Removed (CR) spectra. The best-fit spectra obtained with the Reference ASD-Spectroradiometer and Pure Pixel spectral library were then used for crop discrimination using the ten supervised classifiers namely Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), Support Vector Machine (SVM), Minimum Distance Classifier (MDC), Binary Encoding, deep learning-based Convolution Neural Network (CNN) and different algorithms of Ensemble learning such as Tree Bag, AdaBoost (Adaptive Boosting), Discriminant and RUSBoost (Random Under Sampling). In total, nine crop types were identified, namely, wheat, maize, tobacco, sorghum, linseed, castor, pigeon pea, fennel and chickpea. The performance evaluation of the classifiers was made using various metrics like Overall Accuracy, Kappa Coefficient, Precision, Recall and F1 score. The classifier 2D-CNN was found to be the best with Overall Accuracy, Kappa Coefficient, Precision, Recall and F1 score values of 89.065 %, 0.871,87.565%, 89.541% and 88.678% respectively. The output of this work can be utilized for large scale mapping of crop types at the species level in a short interval of time of a large area with high accuracy.

8.
Chaos ; 34(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252782

RESUMO

To manage risks and minimize the transmission of contagious diseases, individuals may reduce their contact with each other and take other precautions as much as possible in their daily lives and workplaces. As a result, the transmission of the infection reduces due to the behavioral changes. These behavioral changes are incorporated into models by introducing saturation in disease incidence. In this article, we propose and analyze a tuberculosis model that incorporates saturated exogenous reinfection and treatment. The stability analysis of the model's steady states is rigorously examined. We observe that the disease-free equilibrium point and the endemic equilibrium point (EEP) are globally asymptotically stable if the basic reproduction number (R0) is less than 1 and greater than 1, respectively, only when exogenous reinfection is not present (p=0) and when treatment is available for all (ω=0). However, even when R0 is less than 1, tuberculosis may persist at a specific level in the presence of exogenous reinfection and treatment saturation, leading to a backward bifurcation in the system. The existence and direction of Hopf-bifurcations are also discussed. Furthermore, we numerically validate our analytical results using different parameter sets. In the numerical examples, we study Hopf-bifurcations for parameters such as ß, p, α, and ω. In one example, we observe that increasing ß leads to the loss of stability of the unique EEP through a forward Hopf-bifurcation. If ß is further increased, the unique EEP restores its stability, and the bifurcation diagram exhibits an interesting structure known as an endemic bubble. The existence of an endemic bubble for the saturation constant ω is also observed.


Assuntos
Reinfecção , Tuberculose , Humanos , Número Básico de Reprodução , Fenômenos Físicos , Tuberculose/epidemiologia
9.
J Transl Med ; 21(1): 758, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884975

RESUMO

BACKGROUND: Even after 3 years from SARS-CoV-2 identification, COVID-19 is still a persistent and dangerous global infectious disease. Significant improvements in our understanding of the disease pathophysiology have now been achieved. Nonetheless, reliable and accurate biomarkers for the early stratification of COVID-19 severity are still lacking. Long noncoding RNAs (LncRNAs) are ncRNAs longer than 200 nucleotides, regulating the transcription and translation of protein-coding genes and they can be found in the peripheral blood, thus holding a promising biomarker potential. Specifically, peripheral blood mononuclear cells (PBMCs) have emerged as a source of indirect biomarkers mirroring the conditions of tissues: they include monocytes, B and T lymphocytes, and natural killer T cells (NKT), being highly informative for immune-related events. METHODS: We profiled by RNA-Sequencing a panel of 2906 lncRNAs to investigate their modulation in PBMCs of a pilot group of COVID-19 patients, followed by qPCR validation in 111 hospitalized COVID-19 patients. RESULTS: The levels of four lncRNAs were found to be decreased in association with COVID-19 mortality and disease severity: HLA Complex Group 18-242 and -244 (HCG18-242 and HCG18-244), Lymphoid Enhancer Binding Factor 1-antisense 1 (LEF1-AS1) and lncCEACAM21 (i.e. ENST00000601116.5, a lncRNA in the CEACAM21 locus). Interestingly, these deregulations were confirmed in an independent patient group of hospitalized patients and by the re-analysis of publicly available single-cell transcriptome datasets. The identified lncRNAs were expressed in all of the PBMC cell types and inversely correlated with the neutrophil/lymphocyte ratio (NLR), an inflammatory marker. In vitro, the expression of LEF1-AS1 and lncCEACAM21 was decreased upon THP-1 monocytes exposure to a relevant stimulus, hypoxia. CONCLUSION: The identified COVID-19-lncRNAs are proposed as potential innovative biomarkers of COVID-19 severity and mortality.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , Leucócitos Mononucleares/metabolismo , RNA Longo não Codificante/metabolismo , SARS-CoV-2/genética , Biomarcadores/metabolismo , Gravidade do Paciente
10.
Sci Total Environ ; 905: 167188, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734606

RESUMO

Understanding the sorption behavior of per- and poly-fluoroalkyl substances (PFAS) in soils are essential for assessing their mobility and risk in the environment. Heavy metals often coexist with PFAS depending on the source and history of contamination. In this study, we investigated the effect of heavy metal co-contaminants (Pb2+, Cu2+ and Zn2+) on the sorption of 13 anionic PFAS with different perfluorocarbon chain length (C3-C9) in two soils with different properties. Results revealed that Pb2+, Cu2+ and Zn2+ had little effect on the sorption of most short-chain compounds, while the presence of these heavy metals enhanced the sorption of long-chain PFAS in two soils. The distribution coefficients (Kd) of several long-chain PFAS linearly increased with increasing concentrations of heavy metal, especially in the presence of Pb2+ (ΔKd/Δ [Pb2+] > 3 for PFOS and PFNA vs <1 for PFPeS and PFHxS). While several mechanisms may have contributed to the enhancement of sorption of PFAS, the heavy metals most likely contributed through enhanced hydrophobic interactions of PFAS by neutralizing the negative charge of adsorption surfaces in soils and thus making it more favorable for their partitioning onto the solid phase. Moreover, the increase in the concentrations of heavy metals led to a decrease in the pH of the system and promoted sorption of long-chain compounds, especially in soil with lower organic carbon content. Overall, this study provides evidence that the presence of co-existing heavy metal cations in soils can significantly enhance the sorption of long-chain PFAS onto soil, thereby potentially limiting their mobility in the environment.

11.
Environ Monit Assess ; 195(10): 1139, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665531

RESUMO

Protected areas are the cornerstone of biodiversity and serve as a haven for biodiversity conservation. However, due to immense anthropic pressures and ongoing changes in climate, the protected reserves are under immense threat. Human interference through land system changes is a major precusor of fragmentation of landscapes resulting in the decline of Himalayan biodiversity. In this context, this research assessed land use land cover changes (LULCCs) and fragmentation within and outside the Dachigam National Park (DNP) using remote sensing data, GIS-based models and ground truth over the past 55 years (1965-2020). Landscape Fragmentation Tool (LFT) helped to compute edge effect, patchiness, perforation and core areas. The Land Change Modeller (LCM) of IDRISI TerrSet was used for simulating the future LULC for the years 2030, 2050, 2700 and 2100. The analysis of LULCCs showed that built-up and aquatic vegetation expanded by 326% and 174%, respectively in the vicinity of the DNP. The area under agriculture, scrub and pasture decreased primarily due to intensified land use activities. Within the DNP, the area under forest cover declined by 7%. A substantial decrease was observed in the core zone both within (39%) and outside (30%) the DNP indicative of fragmentation of natural habitats. LCM analysis projected 10% increase in the built-up extents besides forests, shrublands and pastures. This knowledge generated in this study shall form an important baseline for understanding and characterising the human-wildlife relationship, initiating long-term ecological research (LTER) on naturally vegetated and aquatic ecosystems (primarily Dal Lake) of the region.


Assuntos
Ecossistema , Parques Recreativos , Humanos , Monitoramento Ambiental , Índia , Agricultura
12.
BMJ Open ; 13(8): e071629, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553192

RESUMO

INTRODUCTION: Congenital heart disease (CHD) represents the most common birth defect, affecting from 0.4% to 1.2% of children born in developed countries. The survival of these patients has increased significantly, but CHD remains one of the major causes of neonatal and childhood death. The aetiology of CHD is complex, with some evidence of both genetic and environmental causes. However, there is still lack of knowledge regarding modifiable risk factors and molecular and genetic mechanisms underlying the development of CHD. This study aims to develop a prospective cohort of patients undergoing cardiac procedures that will bring together routinely collected clinical data and biological samples from patients and their biological mothers, in order to investigate risk factors and predictors of postoperative-outcomes, as well as better understanding the effect of the surgical intervention on the early and long-term outcomes. METHODS AND ANALYSIS: Children OMACp (OMACp, outcome monitoring after cardiac procedure in congenital heart disease) is a multicentre, prospective cohort study recruiting children with CHD undergoing a cardiac procedure. The study aims to recruit 3000 participants over 5 years (2019-2024) across multiple UK sites. Routine clinical data will be collected, as well as participant questionnaires collecting sociodemographic, NHS resource use and quality of life data. Biological samples (blood, urine and surgical waste tissue from patients, and blood and urine samples from biological mothers) will be collected where consent has been obtained. Follow-up outcome and questionnaire data will be collected for 5 years. ETHICS AND DISSEMINATION: The study was approved by the London-Brent Research Ethics Committee on 30 July 2019 (19/SW/0113). Participants (or their parent/guardian if under 16 years of age) must provide informed consent prior to being recruited into the study. Mothers who wish to take part must also provide informed consent prior to being recruited. The study is sponsored by University Hospitals Bristol and Weston Foundation Trust and is managed by the University of Bristol. Children OMACp is adopted onto the National Institute for Health Research Clinical Research Network portfolio. Findings will be disseminated through peer-reviewed publications, presentation at conference, meetings and through patient organisations and newsletters. TRIAL REGISTRATION NUMBER: ISRCTN17650644.


Assuntos
Cardiopatias Congênitas , Qualidade de Vida , Recém-Nascido , Gravidez , Feminino , Humanos , Lactente , Criança , Adulto Jovem , Estudos Prospectivos , Parto , Cardiopatias Congênitas/cirurgia , Medição de Risco , Estudos Multicêntricos como Assunto
13.
Sci Rep ; 13(1): 10546, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385997

RESUMO

Human mobility has played a critical role in the spread of COVID-19. The understanding of mobility helps in getting information on the acceleration or control of the spread of disease. The COVID-19 virus has been spreading among several locations despite all the best efforts related to its isolation. To comprehend this, a multi-patch mathematical model of COVID-19 is proposed and analysed in this work, where-in limited medical resources, quarantining, and inhibitory behaviour of healthy individuals are incorporated into the model. Furthermore, as an example, the impact of mobility in a three-patch model is studied considering the three worst-hit states of India, i.e. Kerala, Maharashtra and Tamil Nadu, as three patches. Key parameters and the basic reproduction number are estimated from the available data. Through results and analyses, it is seen that Kerala has a higher effective contact rate and has the highest prevalence. Moreover, if Kerala is isolated from Maharashtra or Tamil Nadu, the number of active cases will increase in Kerala but reduce in the other two states. Our findings indicate that the number of active cases will decrease in the high prevalence state and increase in the lower prevalence states if the emigration rate is higher than the immigration rate in the high prevalence state. Overall, proper travel restrictions are to be implemented to reduce or control the spread of disease from the high-prevalence state to other states with lower prevalence rates.


Assuntos
COVID-19 , Lepidópteros , Humanos , Animais , COVID-19/epidemiologia , Emigração e Imigração , Índia/epidemiologia , SARS-CoV-2 , Aceleração
14.
Math Biosci Eng ; 20(6): 11000-11032, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37322969

RESUMO

A delay differential equation model of an infectious disease is considered and analyzed. In this model, the impact of information due to the presence of infection is considered explicitly. As information propagation is dependent on the prevalence of the disease, the delay in reporting the prevalence is an important factor. Further, the time lag in waning immunity related to protective measures (such as vaccination, self-protection, responsive behaviour etc.) is also accounted. Qualitative analysis of the equilibrium points of the model is executed and it is observed that when the basic reproduction number is less unity, the local stability of the disease free equilibrium (DFE) depends on the rate of immunity loss as well as on the time delay for the waning of immunity. If the delay in immunity loss is less than a threshold quantity, the DFE is stable, whereas, it loses its stability when the delay parameter crosses the threshold value. When, the basic reproduction number is greater than unity, the unique endemic equilibrium point is found locally stable irrespective of the delay effect under certain parametric conditions. Further, we have analyzed the model system for different scenarios of both delays (i.e., no delay, only one delay, and both delay present). Due to these delays, oscillatory nature of the population is obtained with the help of Hopf bifurcation analysis in each scenario. Moreover, at two different time delays (delay in information's propagation), the emergence of multiple stability switches is investigated for the model system which is termed as Hopf-Hopf (double) bifurcation. Also, the global stability of the endemic equilibrium point is established under some parametric conditions by constructing a suitable Lyapunov function irrespective of time lags. In order to support and explore qualitative results, exhaustive numerical experimentations are carried out which lead to important biological insights and also, these results are compared with existing results.


Assuntos
Doenças Transmissíveis , Modelos Biológicos , Humanos , Simulação por Computador , Fatores de Tempo , Número Básico de Reprodução , Doenças Transmissíveis/epidemiologia
16.
J Hazard Mater ; 455: 131575, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172380

RESUMO

Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.

17.
Basic Res Cardiol ; 118(1): 16, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140699

RESUMO

The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Metilação de DNA , Epigênese Genética , Insuficiência Cardíaca/genética , Doenças Cardiovasculares/genética , Coração
18.
Artigo em Inglês | MEDLINE | ID: mdl-37071358

RESUMO

Hydrological droughts severely affect the demand of water for domestic water supply, irrigation, hydropower generation, and several other purposes. The pervasiveness and consequences of hydrological droughts necessitate a thorough investigation of their characteristics, which is hindered due to unavailability of continuous streamflow records at desirable resolutions. This study aims to assess the hydrological drought characteristics and their spatial distribution using high-resolution Global Flood Awareness System (GloFAS) v3.1 streamflow data for the period 1980 to 2020. Streamflow Drought Index (SDI) was used to characterize droughts at 3-, 6-, 9-, and 12-monthly timescales starting from June, i.e., the start of water year in India. GloFAS is found to capture the spatial distribution of streamflow and its seasonal characteristics. The number of hydrological drought years over the basin varied from 5 to 11 during the study duration, implying that the basin is prone to frequent abnormal water deficits. Interestingly, the hydrological droughts are more frequent in the eastern portion of the basin, i.e., the Upper Narmada Basin. The trend analysis of multi-scalar SDI series using non-parametric Spearman's Rho test exhibited increasing drying trends in the easternmost portions. The results were not similar for the middle and western portions of the basin, which may be due to presence of a large number of reservoirs in these regions and their systematic operations. This study highlights the importance of open-access global products that can be used for monitoring hydrological droughts, especially over ungauged catchments.

19.
Heliyon ; 9(3): e14045, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915546

RESUMO

Deriving the thematic accuracy of models is a fundamental part of image classification analyses. K-fold cross-validation (KCV), as an accuracy assessment technique, can be biased because existing built-in algorithms of software solutions do not handle the high autocorrelation of remotely sensed images, leading to overestimation of accuracies. We aimed to quantify the magnitude of the overestimation of KCV-based accuracies and propose a method to overcome this problem with the example of rooftops using a WorldView-2 (WV2) satellite image, and two orthophotos. Random split to training/testing subsets, independent testing and different types of repeated KCV sampling strategies were used to generate input datasets for classification. Results revealed that applying the random splitting of reference data to training/testing subsets and KCV methods had significantly biased the accuracies by up to 17%; overall accuracies (OAs) can incorrectly reach >99%. We found that repeated KCV can provide similar results to independent testing when spatial sampling is applied with a sufficiently large distance threshold (in our case 10 m). Coarser resolution of WV2 ensured more reliable results (up to a 5-9% increase in OA) than orthophotos. Object-based pixel purity of buildings showed that when using a majority filter for at least of 50% of objects the final accuracy approached 100% with each sampling method. The final conclusion is that KCV-based modelling ensures better accuracy than single models (with better pixel purity on the object level), but the accuracy metrics without spatially filtered sampling are not reliable.

20.
Environ Dev Sustain ; : 1-12, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36785714

RESUMO

There has been a long-lasting impact of the lockdown imposed due to COVID-19 on several fronts. One such front is climate which has seen several implications. The consequences of climate change owing to this lockdown need to be explored taking into consideration various climatic indicators. Further impact on a local and global level would help the policymakers in drafting effective rules for handling challenges of climate change. For in-depth understanding, a temporal study is being conducted in a phased manner in the New Delhi region taking NO2 concentration and utilizing statistical methods to elaborate the quality of air during the lockdown and compared with a pre-lockdown period. In situ mean values of the NO2 concentration were taken for four different dates, viz. 4th February, 4th March, 4th April, and 25th April 2020. These concentrations were then compared with the Sentinel (5p) data across 36 locations in New Delhi which are found to be promising. The results indicated that the air quality has been improved maximum in Eastern Delhi and the NO2 concentrations were reduced by one-fourth than the pre-lockdown period, and thus, reduced activities due to lockdown have had a significant impact. The result also indicates the preciseness of Sentinel (5p) for NO2 concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA