Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 78(6): 591-604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529584

RESUMO

Maize (Zea mays) is one of the most cultivated plants in the world. Due to the large area, the scale of its production, and the demand to increase the yield, there is a need for new environmentally friendly fertilizers. One group of such candidates is bacteria-produced nodulation (or nod) factors. Limited research has explored the impact of nodulation, factors on maize within field conditions, with most studies restricted to greenhouse settings and early developmental stages. Additionally, there is a scarcity of investigations that elucidate the metabolic alterations in the maize stem due to nod-factor exposure. It was therefore the aim of this study. Maize stem's metabolites and fibers were analyzed with various imaging analytical techniques: matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and diffuse reflectance infrared Fourier transform spectroscopy. Moreover, the biochemical analyses were used to evaluate the proteins and soluble carbohydrates concentration and total phenolic content. These techniques were used to evaluate the influence of nod factor-based biofertilizer on the growth of a non-symbiotic plant, maize. The biofertilizer increased the grain yield and the stem mass. Moreover, the spectroscopic and biochemical investigation proved the appreciable biochemical changes in the stems of the maize in biofertilizer-treated plants. Noticeable changes were found in the spatial distribution and the increase in the concentration of flavonoids such as maysin, quercetin, and rutin. Moreover, the concentration of cell wall components (fibers) increased. Furthermore, it was shown that the use of untargeted analyses (such as Raman and ATR FT-IR, spectroscopic imaging, and MALDI-MSI) is useful for the investigation of the biochemical changes in plants.


Assuntos
Fertilizantes , Caules de Planta , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Espectral Raman , Zea mays , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Fertilizantes/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fenóis/análise
2.
Sci Rep ; 13(1): 13737, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612367

RESUMO

Bioreactor systems are very precious tools to generate living bone grafts in vitro. The aim of this study was to compare the effectiveness of rotating and perfusion bioreactor in the production of a living bone construct. Human bone marrow-derived mesenchymal stem cells (BMDSCs) were seeded on the surfaces of hydroxyapatite-based scaffolds and cultured for 21 days in three different conditions: (1) static 3D culture, (2) 3D culture in a perfusion bioreactor, and (3) dynamic 3D culture in a rotating bioreactor. Quantitative evaluation of cell number showed that cultivation in the perfusion bioreactor significantly reduced cell proliferation compared to the rotating bioreactor and static culture. Osteogenic differentiation test demonstrated that BMDSCs cultured in the rotating bioreactor produced significantly greater amount of osteopontin compared to the cells cultured in the perfusion bioreactor. Moreover, Raman spectroscopy showed that cultivation of BMDSCs in the rotating bioreactor enhanced extracellular matrix (ECM) mineralization that was characterized by B-type carbonated substitution of hydroxyapatite (associated with PO43- groups) and higher mineral-to-matrix ratio compared to the ECM of cells cultured in the perfusion system. Thus, it was concluded that the rotating bioreactor was much more effective than the perfusion one in the generation of bone tissue construct in vitro.


Assuntos
Reatores Biológicos , Osteogênese , Humanos , Transplante Ósseo , Durapatita , Perfusão
3.
Metabolites ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367844

RESUMO

Nod factors among the signaling molecules produced by rhizobia in response to flavonoids to induce root nodule formation in the legumes. It is, however, hypothesized that they might increase the yield and positively impact the growth of non-legumes. To evaluate this statement, rapeseed treated with Nod factor-based biofertilizers were cultivated, their stems was collected, and the metabolic changes were investigated using Raman spectroscopy and MALDI mass spectrometry imaging. Biofertilizer proved to increase the concentration of lignin in the cortex, as well as hemicellulose, pectin, and cellulose in the pith. Moreover, the concentration of quercetin derivatives and kaempferol derivatives increased, while the concentration of isorhamnetin dihexoside decreased. The increase in the concentration of the structural components in the stem might therefore increase the lodging resistance, while the increase in concentration of the flavonoids might increase their resistance to fungal infection and herbivorous insects.

4.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293421

RESUMO

Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting from Aeromonas sobria and A. salmonicida subsp. salmonicida infection in trout kidney tissue samples. We successfully applied FT-IR (Fourier transform infrared) spectroscopy and MALDI-MSI (matrix-assisted laser desorption/ionization mass spectrometry imaging) to monitor changes in the structure and compositions of lipids, secondary conformation of proteins, and provide useful information concerning disease progression. Our findings indicate that the following spectral bands' absorbance ratios (spectral biomarkers) can be used to discriminate healthy tissue from pathologically altered tissue, for example, lipids (CH2/CH3), amide I/amide II, amide I/CH2 and amide I/CH3. Spectral data obtained from 10 single measurements of each specimen indicate numerous abnormalities concerning proteins, lipids, and phospholipids induced by Aeromonas infection, suggesting significant disruption of the cell membranes. Moreover, the increase in the content of lysolipids such as lysophosphosphatidylcholine was observed. The results of this study suggest the application of both methods MALDI-MSI and FT-IR as accurate methods for profiling biomolecules and identifying biochemical changes in kidney tissue during the progression of Aeromonas infection.


Assuntos
Aeromonas , Lipidômica , Animais , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteômica , Truta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fosfolipídeos , Proteínas , Biomarcadores/metabolismo , Rim/metabolismo , Amidas
5.
Ind Eng Chem Res ; 61(29): 10496-10510, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35938051

RESUMO

This research discusses the CO2 valorization via hydrogenation over the non-noble metal clusters of Ni and Cu supported on graphitic carbon nitride (g-C3N4). The Ni and Cu catalysts were characterized by conventional techniques including XRD, AFM, ATR, Raman imaging, and TPR and were tested via the hydrogenation of CO2 at 1 bar. The transition-metal-based catalyst designed with atom-economy principles presents stable activity and good conversions for the studied processes. At 1 bar, the rise in operating temperature during CO2 hydrogenation increases the CO2 conversion and the selectivity for CO and decreases the selectivity for methanol on Cu/CN catalysts. For the Ni/CN catalyst, the selectivity to light hydrocarbons, such as CH4, also increased with rising temperature. At 623 K, the conversion attained ca. 20%, with CH4 being the primary product of the reaction (CH4 yield >80%). Above 700 K, the Ni/CN activity increases, reaching almost equilibrium values, although the Ni loading in Ni/CN is lower by more than 90% compared to the reference NiREF catalyst. The presented data offer a better understanding of the effect of the transition metals' small metal cluster and their coordination and stabilization within g-C3N4, contributing to the rational hybrid catalyst design with a less-toxic impact on the environment and health. Bare g-C3N4 is shown as a good support candidate for atom-economy-designed catalysts for hydrogenation application. In addition, cytotoxicity to the keratinocyte human HaCaT cell line revealed that low concentrations of catalysts particles (to 6.25 µg mL-1) did not cause degenerative changes.

6.
Carbohydr Polym ; 295: 119914, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988991

RESUMO

Many biomaterials for bone regeneration have recently been produced using thermally gelled curdlan (1,3-ß-d-glucan) as a binder for bioceramics. As the human organism does not produce enzymes having the ability to degrade curdlan, it is not clear what is the fate of curdlan gel after its implantation in the bone. To clarify this point, in this research osteoclasts were cultured on the curdlan gel to show its degradation by acidic hydrolysis. The studies clearly demonstrated microstructural (AFM and SEM imaging) and chemical changes (Raman spectroscopy) on the curdlan surface caused by osteoclast culture. Moreover, degradation test in a cell-free system using HCl solution (pH = 4.5), mimicking environment in the resorption lacuna, showed great weight loss of the sample, release of glucose, and chemical changes typical of curdlan degradation. Thus, the presented research for the first time provides a strong evidence of osteoclast-mediated acidic hydrolysis of thermally obtained curdlan gel.


Assuntos
Osteoclastos , beta-Glucanas , Géis/metabolismo , Humanos , Hidrólise , Osteoclastos/metabolismo , beta-Glucanas/química
7.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682630

RESUMO

The cross-linking temperature of polymers may affect the surface characteristics and molecular arrangement, which are responsible for their mechanical and physico-chemical properties. The aim of this research was to determine and explain in detail the mechanism of unit interlinkage of two-component chitosan/1,3-ß-d-glucan matrices gelled at 90 °C. This required identifying functional groups interacting with each other and assessing surface topography providing material chemical composition. For this purpose, various spectroscopic and microscopic approaches, such as attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were applied. The results indicate the involvement mainly of the C-C and C-H groups and C=O⋯HN moieties in the process of biomaterial polymerization. Strong chemical interactions and ionocovalent bonds between the N-glucosamine moieties of chitosan and 1,3-ß-d-glucan units were demonstrated, which was also reflected in the uniform surface of the sample without segregation. These unique properties, hybrid character and proper cell response may imply the potential application of studied biomaterial as biocompatible scaffolds used in regenerative medicine, especially in bone restoration and/or wound healing.


Assuntos
Quitosana , Materiais Biocompatíveis/química , Quitosana/química , Glucanos , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície
8.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562996

RESUMO

The aim of this study was to investigate the potential neurotoxic effect of the new anti-seizure medication candidate-5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315), after chronic administration to mice. TP-315 was administered to mice intraperitoneally for 14 days. At 24 h post the last injection, animals were decapitated, their brains were acquired, flash-frozen in liquid nitrogen and cut into 10 µm slices. The FT-IR chemical imaging technique was used for the investigation of the potential neurotoxic effect in the cerebral cortex and hippocampus. The effect on the lipidomic and proteomic profile and on oxidative stress was investigated. The results showed no statistically significant changes in the above-mentioned parameters. TP-315 seems to pose no neurotoxic effect on the mouse brain after chronic use, therefore, its use should be safe.


Assuntos
Anticonvulsivantes , Síndromes Neurotóxicas , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Camundongos , Proteômica , Espectroscopia de Infravermelho com Transformada de Fourier , Tionas
9.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884793

RESUMO

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Assuntos
Fixação de Nitrogênio/fisiologia , Pisum sativum/metabolismo , Rhizobium leguminosarum/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fertilizantes/microbiologia , Leghemoglobina/metabolismo , Pisum sativum/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
10.
Int J Mol Sci ; 22(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063471

RESUMO

The formation of cefuroxime axetil+cyclodextrin (CA+CD) complexes increases the aqueous solubility of CA, improves its physico-chemical properties, and facilitates a biomembrane-mediated drug delivery process. In CD-based tablet formulations, it is crucial to investigate the molecular details of complexes in final pharmaceutical preparation. In this study, Raman spectroscopy and mapping were applied for the detection and identification of chemical groups involved in α-, ß-, γ-, and 2-hydroxypropyl-ß-CD (2-HP- ß-CD)+CA complexation process. The experimental studies have been complemented by molecular dynamics-based investigations, providing additional molecular details of CA+CD interactions. It has been demonstrated that CA forms the guest-host type inclusion complexes with all studied CDs; however, the nature of the interactions is slightly different. It seems that both α- and ß-CD interact with furanyl and methoxy moieties of CA, γ-CD forms a more diverse pattern of interactions with CA, which are not observed in other CDs, whereas 2HP-ß-CD binds CA with the contribution of hydrogen bonding. Apart from supporting this interpretation of the experimental data, molecular dynamics simulations allowed for ordering the CA+CD binding affinities. The obtained results proved that the molecular details of the host-guest complexation can be successfully predicted from the combination of Raman spectroscopy and molecular modeling.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Cefuroxima/análogos & derivados , Ciclodextrinas/química , Análise Espectral Raman , 2-Hidroxipropil-beta-Ciclodextrina/química , Cefuroxima/química , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Vibração
11.
Molecules ; 26(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804535

RESUMO

Fourier Transform Infrared (FT-IR) spectroscopy and imaging combined with hierarchical cluster analysis (HCA) was applied to analyse biochemical properties of Early Middle Ages hemp (Cannabis sativa L.) bast fibres collected from lake bottom sediment of lake Slone. The examined plant macrofossil material constitutes residues of the hemp retting process that took place in the 7th-8th century. By comparison of three samples: untreated isolated bast fibres, and fibres incubated overnight at 4 and 37 °C, we were able to mimic the retting conditions. Using FT-IR qualitative and semi-quantitative assessment of the primary polysaccharides content, total protein content, and their spatial distribution was performed within the hemp fibres. The concentration of cellulose remained vastly unchanged, while the concentration of lignin and pectin was the highest in the untreated sample. The spatial distributions of compounds were heterogeneous in the untreated and 4 °C-incubated samples, and homogenous in the specimen processed at 37 °C. Interestingly, a higher amide content was detected in the latter sample indicating the highest degree of enzymatic degradation. In this study, we show that the spectroscopic methods allow for a non-destructive evaluation of biochemical composition of plant fibres without preparation, which can be an appropriate approach for studying ancient plant remains.


Assuntos
Cannabis/química , Celulose/análise , Sedimentos Geológicos/análise , Lagos/química , Lignina/análise , Imagem Molecular/métodos , Caules de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418952

RESUMO

Raman spectroscopic imaging and mapping were applied to characterise three-compound ceramic composite biomaterial consisting of chitosan, ß-1,3-d-glucan (curdlan) and hydroxyapatite (HA) developed as a bone tissue engineering product (TEP). In this rapidly advancing domain of medical science, the urge for quick, reliable and specific method for products evaluation and tissue-implant interaction, in this case bone formation process, is constantly present. Two types of stem cells, adipose-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMDSCs), were cultured on composite surface. Raman spectroscopic imaging provided advantageous information on molecular differences and spatial distribution of compounds within and between the cell-seeded and untreated samples at a microscopic level. With the use of this, it was possible to confirm composite biocompatibility and bioactivity in vitro. Deposition of HA and changes in its crystallinity along with protein adsorption proved new bone tissue formation in both mesenchymal stem cell samples, where the cells proliferated, differentiated and produced biomineralised extracellular matrix (ECM). The usefulness of spectroscopic Raman imaging was confirmed in tissue engineering in terms of both the organic and inorganic components considering composite-cells interaction.


Assuntos
Microscopia Confocal/métodos , Análise Espectral Raman , Alicerces Teciduais/química , Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Células Cultivadas , Quitosana/química , Durapatita/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119439, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461139

RESUMO

In the present study structural characteristics and physicochemical properties of tri-component biomaterial (consisting of chitosan, ß-1,3-glucan and hydroxyapatite) seeded with mesenchymal stem cells were investigated with the use of diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). In this study we use non-conventional approach of DRIFT spectroscopy for investigating biomaterial changes under simulated physiological conditions. Particular cell-induced changes were intended to be properly evaluated with analytical methods. Abovementioned techniques allowed to precisely assess the changes on the surface of the biomaterial caused by two kinds of stem cells (ADSCs - Adipose tissue-Derived Stem Cells and BMDSCs - Bone Marrow-Derived Stem Cells) cultured directly on the surface of bioceramic-based biomaterial. The bioactivity and biocompatibility of designed bone biomaterial were demonstrated and hence it seems to be a promising scaffold used in tissue engineering. Designed chitosan, ß-1,3-glucan, and hydroxyapatite biomaterial was proven to be non-toxic, surgically handy with cellular compatibility. The obtained results are interesting and promising in terms of spectroscopic methods suitability for qualitative assessment of material-cell interactions.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Materiais Biocompatíveis , Células Cultivadas , Durapatita , Glucanos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais , beta-Glucanas
14.
Mater Sci Eng C Mater Biol Appl ; 119: 111634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321672

RESUMO

Modern bone tissue engineering is based on the use of implants in the form of biomaterials, which are used as scaffolds for osteoprogenitor or stem cells. The task of the scaffolds is to temporarily sustain the function, proliferation and differentiation of bone tissue to enable its regeneration. The aim of this work is to use the macro ATR-FTIR spectroscopic imaging for analysis of the ceramic-based biomaterial (chitosan/ß-1,3-glucan/hydroxyapatite). Specifically, during long-term culture of mesenchymal cells derived from adipose tissue (ADSCs) and bone marrow (BMDSCs) on the surface of scaffold. Infrared spectroscopy allows the acquisition of information on both the organic and inorganic parts of the tested composite. This innovative spectroscopic approach proved to be very suitable for studying the formation of new bone tissue and ECM components, sample staining and demineralization are not required and consequently the approach is rapid and cost-effective. The novelty of this study focuses on the innovatory use of ATR-FTIR imaging to evaluate the molecular structure and maturity of collagen as well as mineral matrix formation and crystallization in the context of bone regenerative medicine. Our research has shown that the biomaterial investigated on this work facilitates the formation of valid bone ECM of the stem cells types studied, as a result of the synthesis of type I collagen and mineral content deposition. Nevertheless, ADSC cells have been proven to produce a greater amount of collagen with a lower content of helical secondary structures, at the same time showing a higher mineralization intensity compared to BMDSC cells. Considering the above results, it could be stated that the developed scaffold is a promising material for biomedical applications, including modification of bone implants to increase their biocompatibility.


Assuntos
Durapatita , Células-Tronco Mesenquimais , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Colágeno , Humanos , Osteogênese , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais
15.
Acta Biochim Pol ; 67(4): 435-440, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090749

RESUMO

Chemically, the Nod factors (NFs) are lipochitooligosaccharides, produced mainly by bacteria of the Rhizobium genus. They are the main signaling molecules involved in the initiation of symbiosis between rhizobia and legume plants. Nod factors affect plant tissues at very low concentrations, even as low as 10-12 mol/L. They induce root hair deformation, cortical cell division, and root nodules' formation in the host plant. At the molecular level, the cytoskeleton is reorganized and expression of genes encoding proteins called nodulins is induced in response to Nod factors in the cell. Action of Nod factors is highly specific because it depends on the structure of a particular Nod factor involved, as well as the plant receptor reacting with it.


Assuntos
Fabaceae/microbiologia , Lipopolissacarídeos/biossíntese , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia , Citoesqueleto/metabolismo , Citoesqueleto/microbiologia , Citoesqueleto/ultraestrutura , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Lipopolissacarídeos/química , Proteínas de Membrana/biossíntese , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Células Vegetais/ultraestrutura , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/biossíntese , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Transdução de Sinais
16.
Acta Biochim Pol ; 67(3): 283-293, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865955

RESUMO

Gram-negative bacteria have developed several nanomachine channels known as type II, III, IV and VI secretion systems that enable export of effector proteins/toxins from the cytosol across the outer membrane to target host cells. Protein secretion systems are critical to bacterial virulence and interactions with other organisms. Aeromonas utilize various secretion machines e.g. two-step T2SS, a Sec-dependent system as well as one-step, Sec-independent T3SS and T6SS systems to transport effector proteins/toxins and virulence factors. Type III secretion system (T3SS) is considered the dominant virulence system in Aeromonas. The activity of bacterial T3SS effector proteins most often leads to disorders in signalling pathways and reorganization of the cell cytoskeleton. There are also scientific reports on the pathogenicity mechanism associated with host cell apopotosis/pyroptosis resulting from secretion of a cytotoxic enterotoxin, i.e. the Act protein, by the T2SS secretion system and an effector protein Hcp by the T6SS system. Type IV secretion system (T4SS) is the system which translocate protein substrates, protein-DNA complexes and DNA into eukaryotic or bacterial target cells. In this paper, the contribution of virulence determinants involved in the pathogenicity potential of Aeromonas is discussed. Considering that the variable expression of virulence factors has a decisive impact on the differences observed in the virulence of particular species of microorganisms, it is important to assess the correlation between bacterial pathogenicity and their virulence-associated genes.


Assuntos
Aeromonas/metabolismo , Aeromonas/patogenicidade , Proteínas de Bactérias/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Fatores de Virulência/metabolismo , Apoptose , Sistemas de Secreção Bacterianos/metabolismo , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/microbiologia , Células HeLa , Humanos , Virulência/genética
17.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858980

RESUMO

In order to determine the effect of different gelation temperatures (80 °C and 90 °C) on the structural arrangements in 1,3-ß-d-glucan (curdlan) matrices, spectroscopic and microscopic approaches were chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and Raman spectroscopy are well-established techniques that enable the identification of functional groups in organic molecules based on their vibration modes. X-ray photoelectron spectroscopy (XPS) is a quantitative analytical method utilized in the surface study, which provided information about the elemental and chemical composition with high surface sensitivity. Contact angle goniometer was applied to evaluate surface wettability and surface free energy of the matrices. In turn, the surface topography characterization was obtained with the use of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Described techniques may facilitate the optimization, modification, and design of manufacturing processes (such as the temperature of gelation in the case of the studied 1,3-ß-d-glucan) of the organic polysaccharide matrices so as to obtain biomaterials with desired characteristics and wide range of biomedical applications, e.g., entrapment of drugs or production of biomaterials for tissue regeneration. This study shows that the 1,3-ß-d-glucan polymer sample gelled at 80 °C has a distinctly different structure than the matrix gelled at 90 °C.


Assuntos
Portadores de Fármacos/química , beta-Glucanas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Temperatura , Molhabilidade
18.
Acta Biochim Pol ; 67(3): 277-281, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32853516

RESUMO

Mass spectrometry imaging (MSI) combined with matrix-assisted laser desorption/ionization (MALDI) is an efficient technology applied in plant metabolomics research. This technique allows for visualization of spatial distribution of metabolites such as: lipids, proteins, peptides and DNA sequences, by determining the x, y coordinates of the compounds exactly in plant tissue. Simplicity of the tissue preparation without the need of prior exact knowledge about the analytes is a great advantage of this method. In this review, we provide an overview of experimental workflow including sample preparation, data acquisition and analysis, methodology, and some recent applications of MALDI MS imaging in plant metabolomics research.


Assuntos
Metaboloma , Metabolômica/métodos , Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metabolismo dos Lipídeos , Peptídeos/metabolismo , Proteínas/metabolismo
19.
Int J Biol Macromol ; 159: 911-921, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445816

RESUMO

Chitosan/1,3-ß-D-glucan matrices have been recently used in various biomedical applications. Within this study, the structural changes in hybrid polysaccharide chitosan/1,3-ß-D-glucan matrices cross-linked at 70 °C and 80 °C were detected with Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR FT-IR) and Raman spectroscopy enabled thorough insights into molecular structure of studied biomaterials, whereas X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) provided their surface characteristics with confirmation of their effective and non-destructive properties. There are temperature-dependent differences in the chemical interactions between 1,3-ß-D-glucan units and N-glucosamine in chitosan, resulting in surface polarity changes. The second order derivatives and deconvolution revealed the alterations in the secondary structure of studied matrices, along with different sized grain-like structures revealed by AFM. Since surface physicochemical properties of biomaterials have great impact on cell behavior, abovementioned techniques may allow to optimize and modify the preparation of polymeric matrices with desired features.


Assuntos
Quitosana/química , Polímeros/química , Análise Espectral , Temperatura , beta-Glucanas/química , Microscopia de Força Atômica , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
20.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471277

RESUMO

Fourier transform infrared (FT-IR) and Raman spectroscopy and mapping were applied to the analysis of biofilms produced by bacteria of the genus Streptococcus. Bacterial biofilm, also called dental plaque, is the main cause of periodontal disease and tooth decay. It consists of a complex microbial community embedded in an extracellular matrix composed of highly hydrated extracellular polymeric substances and is a combination of salivary and bacterial proteins, lipids, polysaccharides, nucleic acids, and inorganic ions. This study confirms the value of Raman and FT-IR spectroscopies in biology, medicine, and pharmacy as effective tools for bacterial product characterization.


Assuntos
Biofilmes , Cárie Dentária/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Streptococcus/patogenicidade , Proteínas de Bactérias/química , Matriz Extracelular/química , Humanos , Polissacarídeos Bacterianos/química , Saliva/química , Saliva/microbiologia , Streptococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA