Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem A Mater ; 12(31): 20386-20402, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39114766

RESUMO

In this work, we show how the activity states of bimetallic Ni0-Fe0 catalysts exsolved from Nd0.6Ca0.4Fe0.97Ni0.03O3-δ (NCFNi) can be influenced electrochemically. The NCFNi parent oxide was employed in the form of thin film mixed conducting model electrodes, which were operated in a humid hydrogen atmosphere. By precisely controlling the oxygen chemical potential in the parent oxide electrode via applying an electrochemical polarisation, we managed to selectively exsolve Ni nanoparticles from the perovskite lattice and study their catalytic activity switching characteristics. To be able to track the surface chemical changes during the switching process, electrochemical polarisation experiments were combined with near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) measurements. This in situ analytical approach allowed relating the difference we observed in the switching behaviour of Ni particles here and of Fe particles in a recent study, to a different kinetic interplay between electrochemical driving force and atmosphere. We propose that slow oxygen transport through nickel oxide, located at the particle/perovskite interface, is mainly responsible for the observed difference to iron exsolutions, which becomes especially evident for larger nickel particles. In addition, in the case of bimetallic exsolutions and with applied bias voltage as a control parameter, we are able to reversibly switch between three different activity states, namely bimetallic Ni0-Fe0 (medium activity), pure Ni0 (high activity), and the inactive oxides.

2.
Micron ; 185: 103687, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053049

RESUMO

In the present study we investigate the CoO/Co3O4 interface in order to determine its intriguing magnetic behavior, which can be utilized for tailoring magnetic properties, enabling spin transport, enhancing magnetic coupling, tuning device functionalities, and realizing miniaturized magnetic devices for various technological applications. We decipher the magnetic properties of the CoO/Co3O4 interface from first principles calculations using Wien2k and probe them experimentally by employing electron energy-loss magnetic chiral dichroism (EMCD), which is an electron-energy loss spectrometry (EELS) based technique in the transmission electron microscope (TEM). Both, theory and experiment, are in perfect agreement and result in a ferromagnetic 2D-electron gas of 5Å thickness directly at the interface.

3.
ACS Catal ; 14(7): 4820-4834, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601782

RESUMO

Adding photocatalytically active TiO2 nanoparticles (NPs) to polymeric paints is a feasible route toward self-cleaning coatings. While paint modification by TiO2-NPs may improve photoactivity, it may also cause polymer degradation and release of toxic volatile organic compounds. To counterbalance adverse effects, a synthesis method for nonmetal (P, N, and C)-doped TiO2-NPs is introduced, based purely on waste valorization. PNC-doped TiO2-NP characterization by vibrational and photoelectron spectroscopy, electron microscopy, diffraction, and thermal analysis suggests that TiO2-NPs were modified with phosphate (P=O), imine species (R=N-R), and carbon, which also hindered the anatase/rutile phase transformation, even upon 700 °C calcination. When added to water-based paints, PNC-doped TiO2-NPs achieved 96% removal of surface-adsorbed pollutants under natural sunlight or UV, paralleled by stability of the paint formulation, as confirmed by micro-Fourier transform infrared (FTIR) surface analysis. The origin of the photoinduced self-cleaning properties was rationalized by three-dimensional (3D) and synchronous photoluminescence spectroscopy, indicating that the dopants led to 7.3 times stronger inhibition of photoinduced e-/h+ recombination when compared to a benchmark P25 photocatalyst.

4.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337301

RESUMO

The widespread adoption of renewable energy hinges on the efficient transportation of hydrogen. Reciprocating piston compressor technology in non-lubricated operation will play a key role, ensuring high flow rates and compression ratios. These systems rely on advanced high-strength sealing solutions for piston and rod packing rings utilizing advanced fiber-reinforced polymers. Polyphenylene sulfide (PPS) polymer matrix composites have seen use in tribological applications and promise high mechanical strength and wear resistance. The presented work describes carbon and glass fiber-reinforced PPS matrix polymers in comparison, which are characterized by complementary methods to investigate their properties and potential for application in reciprocating compressor under non-lubricated operation. Thermo-mechanical and tribological testing was supported by microstructure analysis utilizing advanced X-ray and electron imaging techniques. New insights in micromechanical deformation behavior in regard to fiber materials, interface strength and orientation in fiber-reinforced polymers are given. Conclusions on the suitability of different PPS matrix composites for high-pressure hydrogen compression applications were obtained.

5.
RSC Adv ; 14(7): 4575-4586, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318608

RESUMO

Efficient carbon monoxide oxidation is important to reduce its impacts on both human health and the environment. Following a sustainable synthesis route toward new catalysts, nanosized Co3O4 was synthesized based on extracts of microalgae: Spirulina platensis, Chlorella vulgaris, and Haematococcus pluvialis. Using the metabolites in the extract and applying different calcination temperatures (450, 650, 800 °C) led to Co3O4 catalysts with distinctly different properties. The obtained Co3O4 nanomaterials exhibited octahedral, nanosheet, and spherical morphologies with structural defects and surface segregation of phosphorous and potassium, originating from the extracts. The presence of P and K in the oxide nanostructures significantly improved their catalytic CO oxidation activity. When normalized by the specific surface area, the microalgae-derived catalysts exceeded a commercial benchmark catalyst. In situ studies revealed differences in oxygen mobility and carbonate formation during the reaction. The obtained insights may facilitate the development of new synthesis strategies for manufacturing highly active Co3O4 nanocatalysts.

6.
J Microsc ; 293(3): 138-145, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924264

RESUMO

Since semiconductor structures are becoming smaller and smaller, the examination methods must also take this development into account. Optical methods have long reached their limits here, but small dimensions are also a challenge for electron beam techniques, especially when it comes to determining optical properties. In this paper, electron microscopic methods of investigating optical properties are discussed. Special attention is given to the physical limits and how to deal with them. We will cover electron energy loss spectrometry as well as cathodoluminescence spectrometry. We pay special attention to inelastic delocalisation, radiation damage, the Cerenkov effect, interference effects of optical excitations and higher diffraction orders on a grating analyser for the cathodoluminescence signal.

7.
Top Catal ; 66(19-20): 1539-1552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37830054

RESUMO

Syngas can be produced from biomethane via Partial Oxidation of Methane (POM), being an attractive route since it is ecofriendly and sustainable. In this work, catalysts of Ni supported on MgO-ZrO2 solid solutions, prepared by a one-step polymerization method, were characterized by HRTEM/EDX, XRD, XPS, H2-TPR, and in situ XRD. All catalysts, including Ni/ZrO2 and Ni/MgO as reference, were tested for POM (CH4:O2 molar ratio 2, 750 ºC, 1 atm). NiO/MgO/ZrO2 contained two solid-solutions, MgO-ZrO2 and NiO-MgO, as revealed by XRD and XPS. Ni (30 wt%) supported on MgO-ZrO2 solid solution exhibited high methane conversion and hydrogen selectivity. However, depending on the MgO amount (0, 4, 20, 40, 100 molar percent) major differences in NiO reducibility, growth of Ni0 crystallite size during H2 reduction and POM, and in carbon deposition rates were observed. Interestingly, catalysts with lower MgO content achieved the highest CH4 conversion (~ 95%), high selectivity to H2 (1.7) and CO (0.8), and low carbon deposition rates (0.024 g carbon.gcat-1 h-1) with Ni4MgZr (4 mol% MgO) turning out to be the best catalyst. In situ XRD during POM indicated metallic Ni nanoparticles (average crystallite size of 31 nm), supported by MgO-ZrO2 solid solution, with small amounts of NiO-MgO being present as well. The presence of MgO also influenced the morphology of the carbon deposits, leading to filaments instead of amorphous carbon. A combustion-reforming mechanism is suggested and using a MgO-ZrO2 solid solution support strongly improves catalytic performance, which is attributed to effective O2, CO2 and H2O activation at the Ni/MgO-ZrO2 interface.

8.
ACS Catal ; 13(11): 7650-7660, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37288091

RESUMO

The catalytic behavior of Rh particles supported by three different materials (Rh, Au, and ZrO2) in H2 oxidation has been studied in situ by correlative photoemission electron microscopy (PEEM) and scanning photoemission electron microscopy (SPEM). Kinetic transitions between the inactive and active steady states were monitored, and self-sustaining oscillations on supported Rh particles were observed. Catalytic performance differed depending on the support and Rh particle size. Oscillations varied from particle size-independent (Rh/Rh) via size-dependent (Rh/ZrO2) to fully inhibited (Rh/Au). For Rh/Au, the formation of a surface alloy induced such effects, whereas for Rh/ZrO2, the formation of substoichiometric Zr oxides on the Rh surface, enhanced oxygen bonding, Rh-oxidation, and hydrogen spillover onto the ZrO2 support were held responsible. The experimental observations were complemented by micro-kinetic simulations, based on variations of hydrogen adsorption and oxygen binding. The results demonstrate how correlative in situ surface microscopy enables linking of the local structure, composition, and catalytic performance.

9.
Ultramicroscopy ; 251: 113770, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37267709

RESUMO

Cathodoluminescence (CL) is a developing analytical method in electron microscopy, because of its excellent energy resolution. Usually a Czerny-Turner type spectrometer is employed, having a blazed grating as analyzer. Unlike a prism analyzer, where the dispersion depends on the refractive index of the prism itself leading to a non-linear spectral distribution, the grating has the advantage that the spectral distribution depends linearly on the wavelength. As a draw-back, higher-order refraction alters the measured optical spectrum at larger wavelengths. In general, blazed gratings are used in order to minimize this effect in a certain spectral range. Nevertheless, the higher-order intensities can be still significant. In the present study we present a method for correcting the acquired optical spectra with respect to higher order diffraction intensities and apply it to CaO and GaN CL-spectra.

10.
ACS Appl Mater Interfaces ; 15(18): 22471-22484, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125734

RESUMO

The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers' sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment.

11.
Cell Mol Neurobiol ; 43(6): 2909-2923, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36920627

RESUMO

Iron is known to accumulate in neurological disorders, so a careful balance of the iron concentration is essential for healthy brain functioning. An imbalance in iron homeostasis could arise due to the dysfunction of proteins involved in iron homeostasis. Here, we focus on ferritin-the primary iron storage protein of the brain. In this study, we aimed to improve a method to measure ferritin-bound iron in the human post-mortem brain, and to discern its distribution in particular cell types and brain regions. Though it is known that glial cells and neurons differ in their ferritin concentration, the change in the number and distribution of iron-filled ferritin cores between different cell types during autolysis has not been revealed yet. Here, we show the cellular and region-wide distribution of ferritin in the human brain using state-of-the-art analytical electron microscopy. We validated the concentration of iron-filled ferritin cores to the absolute iron concentration measured by quantitative MRI and inductively coupled plasma mass spectrometry. We show that ferritins lose iron from their cores with the progression of autolysis whereas the overall iron concentrations were unaffected. Although the highest concentration of ferritin was found in glial cells, as the total ferritin concentration increased in a patient, ferritin accumulated more in neurons than in glial cells. Summed up, our findings point out the unique behaviour of neurons in storing iron during autolysis and explain the differences between the absolute iron concentrations and iron-filled ferritin in a cell-type-dependent manner in the human brain. The rate of loss of the iron-filled ferritin cores during autolysis is higher in neurons than in glial cells.


Assuntos
Ferritinas , Ferro , Humanos , Ferro/metabolismo , Ferritinas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
12.
Catal Sci Technol ; 13(3): 624-636, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36760342

RESUMO

The sensing of volatile organic compounds by composites containing metal oxide semiconductors is typically explained via adsorption-desorption and surface electrochemical reactions changing the sensor's resistance. The analysis of molecular processes on chemiresistive gas sensors is often based on indirect evidence, whereas in situ or operando studies monitoring the gas/surface interactions enable a direct insight. Here we report a cross-disciplinary approach employing spectroscopy of working sensors to investigate room temperature methanol detection, contrasting well-characterized nanocomposite (TiO2@rGO-NC) and reduced-graphene oxide (rGO) sensors. Methanol interactions with the sensors were examined by (quasi) operando-DRIFTS and in situ-ATR-FTIR spectroscopy, the first paralleled by simultaneous measurements of resistance. The sensing mechanism was also studied by mass spectroscopy (MS), revealing the surface electrochemical reactions. The operando and in situ spectroscopy techniques demonstrated that the sensing mechanism on the nanocomposite relies on the combined effect of methanol reversible physisorption and irreversible chemisorption, sensor modification over time, and electron/O2 depletion-restoration due to a surface electrochemical reaction forming CO2 and H2O.

13.
ACS Catal ; 12(19): 11974-11983, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36249872

RESUMO

Spatio-temporal nonuniformities in H2 oxidation on individual Rh(h k l) domains of a polycrystalline Rh foil were studied in the 10-6 mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations.

14.
Catal Letters ; 152(10): 2892-2907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196216

RESUMO

A surface science based approach was applied to model carbon supported Pd nanoparticle catalysts. Employing physical vapour deposition of Pd on sputtered surfaces of highly oriented pyrolytic graphite (HOPG), model catalysts were prepared that are well-suited for characterization by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Analysis of the HOPG substrate before and after ion-bombardment, and of Pd/HOPG before and after annealing, revealed the number of "nominal" HOPG defects (~ 1014 cm-2) as well as the nucleation density (~ 1012 cm-2) and structural characteristics of the Pd nanoparticles (mean size/height/distribution). Two model systems were stabilized by UHV annealing to 300 °C, with mean Pd particles sizes of 4.3 and 6.8 nm and size/height aspect ratio up to ~ 10. A UHV-compatible flow microreactor and gas chromatography were used to determine the catalytic performance of Pd/HOPG in ethylene (C2H4) hydrogenation up to 150 °C under atmospheric pressure, yielding temperature-dependent conversion values, turnover frequencies (TOFs) and activation energies. The performance of Pd nanocatalysts is compared to that of polycrystalline Pd foil and contrasted to Pt/HOPG and Pt foil, pointing to a beneficial effect of the metal/carbon phase boundary, reflected by up to 10 kJ mol-1 lower activation energies for supported nanoparticles.

15.
ACS Catal ; 12(20): 12774-12785, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36313520

RESUMO

The kinetic behavior of individual Rh(hkl) nanofacets coupled in a common reaction system was studied using the apex of a curved rhodium microcrystal (radius of 0.65 µm) as a model of a single catalytic particle and field electron microscopy for in situ imaging of catalytic hydrogen oxidation. Depending on the extent of interfacet coupling via hydrogen diffusion, different oscillating reaction modes were observed including highly unusual multifrequential oscillations: differently oriented nanofacets oscillated with differing frequencies despite their immediate neighborhood. The transitions between different modes were induced by variations in the particle temperature, causing local surface reconstructions, which create locally protruding atomic rows. These atomic rows modified the coupling strength between individual nanofacets and caused the transitions between different oscillating modes. Effects such as entrainment, frequency locking, and reconstruction-induced collapse of spatial coupling were observed. To reveal the origin of the different experimentally observed effects, microkinetic simulations were performed for a network of 105 coupled oscillators, modeling the individual nanofacets communicating via hydrogen surface diffusion. The calculated behavior of the oscillators, the local frequencies, and the varying degree of spatial synchronization describe the experimental observations well.

16.
Ultramicroscopy ; 241: 113594, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36103776

RESUMO

We present a method to separate coherent and incoherent contributions of cathodoluminescence (CL) by using a time-resolved coincidence detection scheme. For a proof-of-concept experiment, we generate CL by irradiating an optical multimode fiber with relativistic electrons in a transmission electron microscope. A temporal analysis of the CL reveals a large peak in coincidence counts for small time delays, also known as photon bunching. Additional measurements allow us to attribute the bunching peak to the temporal correlations of coherent CL (Cherenkov radiation) created by individual electrons. Thereby, we show that coincidence measurements can be employed to discriminate coherent from incoherent CL and to quantify their contribution to the detected CL signal. This method provides additional information for the correct interpretation of CL, which is essential for material characterization. Furthermore, it might facilitate the study of coherent electron-matter interaction.

17.
ChemCatChem ; 14(14): e202200322, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36035519

RESUMO

Monolayer protected Au nanocluster catalysts are known to undergo structural changes during catalytic reactions, including dissociation and migration of ligands onto the support, which strongly affects their activity and stability. To better understand how the nature of ligands influences the catalytic activity of such catalysts, three types of ceria supported Au nanoclusters with different kinds of ligands (thiolates, phosphines and a mixture thereof) have been studied, employing CO oxidation as model reaction. The thiolate-protected Au25/CeO2 showed significantly higher CO conversion after activation at 250 °C than the cluster catalysts possessing phosphine ligands. Temperature programmed oxidation and in situ infrared spectroscopy revealed that while the phosphine ligands seemed to decompose and free Au surface was exposed, temperatures higher than 250 °C are required to efficiently remove them from the whole catalyst system. Moreover, the presence of residues on the support seemed to have much greater influence on the reactivity than the gold particle size.

18.
Histochem Cell Biol ; 158(3): 199-201, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917025

Assuntos
Microscopia , Organelas
19.
Materials (Basel) ; 14(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803401

RESUMO

Energy-loss magnetic chiral dichroism (EMCD) is a versatile method for measuring magnetism down to the atomic scale in transmission electron microscopy (TEM). As the magnetic signal is encoded in the phase of the electron wave, any process distorting this characteristic phase is detrimental for EMCD. For example, elastic scattering gives rise to a complex thickness dependence of the signal. Since the details of elastic scattering depend on the electron's energy, EMCD strongly depends on the acceleration voltage. Here, we quantitatively investigate this dependence in detail, using a combination of theory, numerical simulations, and experimental data. Our formulas enable scientists to optimize the acceleration voltage when performing EMCD experiments.

20.
Ultramicroscopy ; 224: 113260, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774193

RESUMO

For most materials science oriented applications incoherent cathodoluminescence (CL) is of main interest, for which the recombination of electron-hole pairs yields the emission of light. However, the incoherent signal is superimposed by coherently excited photons, similar to the situation for X-rays in Energy-Dispersive X-ray spectra (EDX). In EDX two very different processes superimpose in each spectrum: Bremsstrahlung and characteristic X-ray radiation. Both processes yield X-rays, however, their origin is substantially different. Therefore, in the present CL study we focus on the coherent emission of light, in particular Cerenkov radiation. We use a 200µm thick GaAs sample, not electron transparent and therefore not acting as a light guide, and investigate the radiation emitted from the top surface of the sample generated by back-scattered electrons on their way out of the specimen. The CL spectra revealed a pronounced peak corresponding to the expected interband transition. This peak was at 892 nm at room temperature and shifted to 845 nm at 80 K. The coherent light emission significantly modifies the shape of CL spectra at elevated beam energies. For the first time, by the systematic variation of current and energy of primary electrons we could distinguish the coherent and incoherent light superimposed in CL spectra. These findings are essential for the correct interpretation of CL spectra in STEM. The Cerenkov intensity as well as the total intensity in a spectrum scales linearly with the beam current. Additionally, we investigate the influence of asymmetric mirrors on the spectral shapes, collecting roughly only half of the whole solid angle. Different emission behaviour of different physical causes thus lead to changes in the overall spectral shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA