Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurol Genet ; 10(2): e200146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617198

RESUMO

Background and Objectives: Hexokinase 1 (encoded by HK1) catalyzes the first step of glycolysis, the adenosine triphosphate-dependent phosphorylation of glucose to glucose-6-phosphate. Monoallelic HK1 variants causing a neurodevelopmental disorder (NDD) have been reported in 12 individuals. Methods: We investigated clinical phenotypes, brain MRIs, and the CSF of 15 previously unpublished individuals with monoallelic HK1 variants and an NDD phenotype. Results: All individuals had recurrent variants likely causing gain-of-function, representing mutational hot spots. Eight individuals (c.1370C>T) had a developmental and epileptic encephalopathy with infantile onset and virtually no development. Of the other 7 individuals (n = 6: c.1334C>T; n = 1: c.1240G>A), 3 adults showed a biphasic course of disease with a mild static encephalopathy since early childhood and an unanticipated progressive deterioration with, e.g., movement disorder, psychiatric disease, and stroke-like episodes, epilepsy, starting in adulthood. Individuals who clinically presented in the first months of life had (near)-normal initial neuroimaging and severe cerebral atrophy during follow-up. In older children and adults, we noted progressive involvement of basal ganglia including Leigh-like MRI patterns and cerebellar atrophy, with remarkable intraindividual variability. The CSF glucose and the CSF/blood glucose ratio were below the 5th percentile of normal in almost all CSF samples, while blood glucose was unremarkable. This biomarker profile resembles glucose transporter type 1 deficiency syndrome; however, in HK1-related NDD, CSF lactate was significantly increased in all patients resulting in a substantially different biomarker profile. Discussion: Genotype-phenotype correlations appear to exist for HK1 variants and can aid in counseling. A CSF biomarker profile with low glucose, low CSF/blood glucose, and high CSF lactate may point toward monoallelic HK1 variants causing an NDD. This can help in variant interpretation and may aid in understanding the pathomechanism. We hypothesize that progressive intoxication and/or ongoing energy deficiency lead to the clinical phenotypes and progressive neuroimaging findings.

3.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38297832

RESUMO

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Assuntos
Síndrome de Cornélia de Lange , Deficiência Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Heterozigoto , Deficiência Intelectual/genética , Mutação , Fenótipo
4.
J Med Genet ; 61(2): 186-195, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734845

RESUMO

PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.


Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genética
5.
medRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808847

RESUMO

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

6.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
7.
Biomaterials ; 299: 122165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290157

RESUMO

The control of supramolecular complexes in living systems at the molecular level is an important goal in life-sciences. Spatiotemporal organization of molecular distribution & flow of such complexes are essential physicochemical processes in living cells and important for pharmaceutical processes. Membraneless organelles (MO) found in eukaryotic cells, formed by liquid-liquid phase-separation (LLPS) of intrinsically disordered proteins (IDPs) control and adjust intracellular organization. Artificially designed compartments based on LLPS open up a novel pathway to control chemical flux and partition in vitro and in vivo. We designed a library of chemically precisely defined block copolymer-like proteins based on elastin-like proteins (ELPs) with defined charge distribution and type, as well as polar and hydrophobic block domains. This enables the programmability of physicochemical properties and to control adjustable LLPS in vivo attaining control over intracellular partitioning and flux as role model for in vitro and in vivo applications. Tailor-made ELP-like block copolymer proteins exhibiting IDP-behavior enable LLPS formation in vitro and in vivo allowing the assembly of membrane-based and membraneless superstructures via protein phase-separation in E. coli. Subsequently, we demonstrate the responsiveness of protein phase-separated spaces (PPSSs) to environmental physicochemical triggers and their selective, charge-dependent and switchable interaction with DNA or extrinsic and intrinsic molecules enabling their selective shuttling across semipermeable phase boundaries including (cell)membranes. This paves the road for adjustable artificial PPSS-based storage and reaction spaces and the specific transport across phase boundaries for applications in pharmacy and synthetic biology.


Assuntos
Escherichia coli , Proteínas Intrinsicamente Desordenadas , Escherichia coli/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Citoplasma/metabolismo , Organelas/metabolismo , Membrana Celular/metabolismo
8.
Eur J Hum Genet ; 31(9): 1032-1039, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365401

RESUMO

DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.


Assuntos
Anormalidades Múltiplas , Metilação de DNA , Humanos , Fenótipo , Anormalidades Múltiplas/genética , Alelos , Mosaicismo
9.
Angew Chem Int Ed Engl ; 61(3): e202112738, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34806270

RESUMO

Elastin-like proteins (ELPs) are biologically important proteins and models for intrinsically disordered proteins (IDPs) and dynamic structural transitions associated with coacervates and liquid-liquid phase transitions. However, the conformational status below and above coacervation temperature and its role in the phase separation process is still elusive. Employing matrix least-squares global Boltzmann fitting of the circular dichroism spectra of the ELPs (VPGVG)20 , (VPGVG)40 , and (VPGVG)60 , we found that coacervation occurs sharply when a certain number of repeat units has acquired ß-turn conformation (in our sequence setting a threshold of approx. 20 repeat units). The character of the differential scattering of the coacervate suspensions indicated that this fraction of ß-turn structure is still retained after polypeptide assembly. Such conformational thresholds may also have a role in other protein assembly processes with implications for the design of protein-based smart materials.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Termodinâmica , Dicroísmo Circular , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Conformação Proteica
10.
J Vis Exp ; (158)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338656

RESUMO

Tailored proteinaceous building blocks are versatile candidates for the assembly of supramolecular structures such as minimal cells, drug delivery vehicles and enzyme scaffolds. Due to their biocompatibility and tunability on the genetic level, Elastin-like proteins (ELP) are ideal building blocks for biotechnological and biomedical applications. Nevertheless, the assembly of protein based supramolecular structures with distinct physiochemical properties and good encapsulation potential remains challenging. Here we provide two efficient protocols for guided self-assembly of amphiphilic ELPs into supramolecular protein architectures such as spherical coacervates, fibers and stable vesicles. The presented assembly protocols generate Protein Membrane-Based Compartments (PMBCs) based on ELPs with adaptable physicochemical properties. PMBCs demonstrate phase separation behavior and reveal method dependent membrane fusion and are able to encapsulate chemically diverse fluorescent cargo molecules. The resulting PMBCs have a high application potential as a drug formulation and delivery platform, artificial cell, and compartmentalized reaction space.


Assuntos
Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos/métodos , Elastina/química , Materiais Biocompatíveis , Portadores de Fármacos/química , Membranas Artificiais , Polimerização
11.
ACS Synth Biol ; 9(4): 827-842, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32130855

RESUMO

The investigation of complex biological processes in vivo often requires defined multiple bioconjugation and positioning of functional entities on 3D structures. Prominent examples include spatially defined protein complexes in nature, facilitating efficient biocatalysis of multistep reactions. Mimicking natural strategies, synthetic scaffolds should comprise bioorthogonal conjugation reactions and allow for absolute stoichiometric quantification as well as facile scalability through scaffold reproduction. Existing in vivo scaffolding strategies often lack covalent conjugations on geometrically confined scaffolds or precise quantitative characterization. Addressing these shortcomings, we present a bioorthogonal dual conjugation platform based on genetically encoded artificial compartments in vivo, comprising two distinct genetically encoded covalent conjugation reactions and their precise stoichiometric quantification. The SpyTag/SpyCatcher (ST/SC) bioconjugation and the controllable strain-promoted azide-alkyne cycloaddition (SPAAC) were implemented on self-assembled protein membrane-based compartments (PMBCs). The SPAAC reaction yield was quantified to be 23% ± 3% and a ST/SC surface conjugation yield of 82% ± 9% was observed, while verifying the compatibility of both chemical reactions as well as enhanced proteolytic stability. Using tandem mass spectrometry, absolute concentrations of the proteinaceous reactants were calculated to be 0.11 ± 0.05 attomol/cell for PMBC surface-tethered mCherry-ST-His and 0.22 ± 0.09 attomol/cell for PMBC-constituting pAzF-SC-E20F20-His. The established in vivo conjugation platform enables quantifiable protein-protein interaction studies on geometrically defined scaffolds and paves the road to investigate effects of scaffold-tethering on enzyme activity.


Assuntos
Conjugação Genética/fisiologia , Espaço Intracelular/metabolismo , Engenharia Metabólica/métodos , Biologia Sintética/métodos , Conjugação Genética/genética , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Espaço Intracelular/fisiologia , Modelos Biológicos , Proteínas/genética , Proteínas/metabolismo
12.
Small ; 15(30): e1900163, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31173449

RESUMO

The molecular structuring of complex architectures and the enclosure of space are essential requirements for technical and living systems. Self-assembly of supramolecular structures with desired shape, size, and stability remains challenging since it requires precise regulation of physicochemical and conformational properties of the components. Here a general platform for controlled self-assembly of tailored amphiphilic elastin-like proteins into desired supramolecular protein assemblies ranging from spherical coacervates over molecularly defined twisted fibers to stable unilamellar vesicles is introduced. The described assembly protocols efficiently yield protein membrane-based compartments (PMBC) with adjustable size, stability, and net surface charge. PMBCs demonstrate membrane fusion and phase separation behavior and are able to encapsulate structurally and chemically diverse cargo molecules ranging from small molecules to naturally folded proteins. The ability to engineer tailored supramolecular architectures with defined fusion behavior, tunable properties, and encapsulated cargo paves the road for novel drug delivery systems, the design of artificial cells, and confined catalytic nanofactories.


Assuntos
Elastina/química , Tensoativos/química , Dicroísmo Circular , Elastina/ultraestrutura , Fluorescência , Membranas Artificiais , Nanofibras/química , Nanofibras/ultraestrutura , Tamanho da Partícula , Conformação Proteica , Temperatura
13.
Biosens Bioelectron ; 115: 97-103, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803867

RESUMO

The detection of antibodies from blood sera is crucial for diagnostic purposes. Miniaturized protein assays in combination with microfluidic setups hold great potential by enabling automated handling and multiplexed analyses. Yet, the separate expression, purification, and storage of many individual proteins are time consuming and limit applicability. In vitro cell-free expression has been proposed as an alternative procedure for the generation of protein assays. We report the successful in vitro expression of different model proteins from DNA templates with an optimized expression mix. His10-tagged proteins were specifically captured and immobilized on a Ni-NTA coated sensor surface directly from the in vitro expression mix. Finally, the specific binding of antibodies from rabbit-derived blood sera to the immobilized proteins was monitored by imaging reflectometric interferometry (iRIf). Antibodies in the blood sera could be identified by binding to the respective epitopes with minimal cross reactivity. The results show the potential of in vitro expression and label-free detection for binding assays in general and diagnostic purposes in specific.


Assuntos
Anticorpos/sangue , Antígenos/sangue , Técnicas Biossensoriais , Proteínas Imobilizadas/química , Anticorpos/química , Interferometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA