Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 198(1): 167-178, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741665

RESUMO

Insects frequently confront different microbial assemblages. Bacteria inhabiting an insect gut are often commensal, but some can become pathogenic when the insect is compromised from different stressors. Herbivores are often confronted by various forms of plant resistance, but how defenses generate opportunistic microbial infections from residents in the gut are not well understood. In this study, we evaluated the pathogenic tendencies of Serratia isolated from the digestive system of healthy fall armyworm larvae (Spodoptera frugiperda) and how it interfaces with plant defenses. We initially selected Serratia strains that varied in their direct expression of virulence factors. Inoculation of the different isolates into the fall armyworm body cavity indicated differing levels of pathogenicity, with some strains exhibiting no effects while others causing mortality 24 h after injection. Oral inoculations of pathogens on larvae provided artificial diets caused marginal (< 7%) mortality. However, when insects were provided different maize genotypes, mortality from Serratia increased and was higher on plants exhibiting elevated levels of herbivore resistance (< 50% mortality). Maize defenses facilitated an initial invasion of pathogenic Serratia into the larval hemocoel¸ which was capable of overcoming insect antimicrobial defenses. Tomato and soybean further indicated elevated mortality due to Serratia compared to artificial diets and differences between plant genotypes. Our results indicate plants can facilitate the incipient emergence of pathobionts within gut of fall armyworm. The ability of resident gut bacteria to switch from a commensal to pathogenic lifestyle has significant ramifications for the host and is likely a broader phenomenon in multitrophic interactions facilitated by plant defenses.


Assuntos
Serratia , Zea mays , Animais , Herbivoria , Larva , Spodoptera
2.
PLoS One ; 15(3): e0229848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168341

RESUMO

Animals have ubiquitous associations with microorganisms, but microbial community composition and population dynamics can vary depending upon many environmental factors, including diet. The bacterial communities present in caterpillar (Lepidoptera) guts are highly variable, even among individuals of a species. Across lepidopteran species, it is unclear if the variation in their gut bacterial communities is due to ingested bacteria with diets or responses of gut bacteria to their diet. In this study, we aimed to understand whether bacteria establish and persist in the lepidopteran gut or just pass through the gut with food. We also examined whether bacterial establishment in lepidopteran guts depended on diet. We conducted a series of experiments using axenic and gnotobiotic insect rearing methods to address these objectives. We found that bacteria were established and maintained without replacement through the larval instars of the fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Gut bacterial titers increased when larvae were fed gamma-irradiated corn leaves but decreased when fed a wheat germ artificial diet. However, bacterial titers of larvae fed on a pinto bean artificial diet were similar to those consuming intact plants. We also observed that microbial titers of fall armyworm and other folivorous larvae were positively related to the host body size throughout larval development. Collectively, these results suggest that the populations of bacteria present in caterpillar guts are not simply a transient community passing through the system, but rather are a dynamic component of the caterpillar gut. Sensitivity of bacterial populations to the type of diet fed to lepidopterans suggests that not all diets are equally useful for reducing variance in community structure and interpreting insect-microbe interactions.


Assuntos
Dieta , Microbioma Gastrointestinal , Larva/microbiologia , Spodoptera/microbiologia , Animais , Bactérias/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Larva/crescimento & desenvolvimento , Spodoptera/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA