Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Ecol Evol ; 7(10): 1654-1666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667002

RESUMO

Human-driven environmental changes shape ecological communities from local to global scales. Within cities, landscape-scale patterns and processes and species characteristics generally drive local-scale wildlife diversity. However, cities differ in their structure, species pools, geographies and histories, calling into question the extent to which these drivers of wildlife diversity are predictive at continental scales. In partnership with the Urban Wildlife Information Network, we used occurrence data from 725 sites located across 20 North American cities and a multi-city, multi-species occupancy modelling approach to evaluate the effects of ecoregional characteristics and mammal species traits on the urbanization-diversity relationship. Among 37 native terrestrial mammal species, regional environmental characteristics and species traits influenced within-city effects of urbanization on species occupancy and community composition. Species occupancy and diversity were most negatively related to urbanization in the warmer, less vegetated cities. Additionally, larger-bodied species were most negatively impacted by urbanization across North America. Our results suggest that shifting climate conditions could worsen the effects of urbanization on native wildlife communities, such that conservation strategies should seek to mitigate the combined effects of a warming and urbanizing world.

3.
Glob Chang Biol ; 27(21): 5446-5459, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34405496

RESUMO

Urban biodiversity provides critical ecosystem services and is a key component to environmentally and socially sustainable cities. However, biodiversity varies greatly within and among cities, leading to human communities with changing and unequal experiences with nature. The "luxury effect," a hypothesis that predicts a positive correlation between wealth, typically measured by per capita income, and species richness may be one indication of these inequities. While the luxury effect is well studied for some taxa, it has rarely been investigated for mammals, which provide unique ecosystem services (e.g., biological pest control) and exhibit significant potential for negative human-wildlife interactions (e.g., nuisances or conflicts). We analyzed a large dataset of mammal detections across 20 North American cities to test whether the luxury effect is consistent for medium- to large-sized terrestrial mammals across diverse urban contexts. Overall, support for the luxury effect, as indicated by per capita income, was inconsistent; we found evidence of a luxury effect in approximately half of our study cities. Species richness was, however, highly and negatively correlated with urban intensity in most cities. We thus suggest that economic factors play an important role in shaping urban mammal communities for some cities and species, but that the strongest driver of urban mammal diversity is urban intensity. To better understand the complexity of urban ecosystems, ecologists and social scientists must consider the social and political factors that drive inequitable human experiences with nature in cities.


Assuntos
Ecossistema , Urbanização , Animais , Biodiversidade , Cidades , Humanos , Mamíferos
4.
PLoS One ; 12(5): e0175658, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542218

RESUMO

Similar to vehicles on roadways, trains frequently kill wildlife via collisions along railways. Despite the prevalence of this mortality worldwide, little is known about the relative importance of wildlife attractants associated with railways, including spilled agricultural products, enhanced vegetation, invertebrates, and carcasses of rail-killed ungulates. We assessed the relative importance of several railway attractants to a provincially-threatened population of grizzly bears (Ursus arctos) in Banff and Yoho National Parks, Canada, for which rail-caused mortality has increased in recent decades without known cause. We examined the relationship between the use of the railway and diet by fitting 21 grizzly bears with GPS collars in 2011-2013 and measuring the stable isotope values (δ15N, δ34S) derived from their hair. We also examined the importance of rail-associated foods to grizzly bears by analyzing 230 grizzly bear scats collected from May through October in 2012-2014, some of which could be attributed to GPS-collared bears. Among the 21 collared bears, 17 used the rail rarely (<9% of the days they were monitored), and only four bears (which included the three smallest bears and the largest bear in our sample) used the rail frequently (>20% of their monitored days). We found no significant relationships between δ15N and δ34S values measured from the hair of grizzlies and their frequency of rail use. Instead, δ15N increased with body mass, especially for male bears, suggesting large males consumed more animal protein during hair growth. All four bears that used the railway frequently produced scats containing grain. Almost half the scats (43%) collected within 150 m of the railway contained grain compared to only 7% of scats found >150 m from the railway. Scats deposited near the rail were also more likely to contain grain in the fall (85% of scats) compared to summer (14%) and spring (17%), and those containing grain were more diverse in their contents (6.8 ± 2.2 species vs. 4.9 ± 1.6, P < 0.001). Lastly, scats collected near the rail were more likely to contain ungulate hair and ant remains, especially in the summer. Our results support local management knowledge that some bears in the region use the railway to forage and supplement their diets with spilled grain, but that individual use of the railway and associated foods were highly variable. We suggest that managers continue to reduce the risk of bears being killed by trains by reactively removing grain and ungulate carcasses from the railway, reducing the amount of grain spilled by trains, and target mitigation to the specific individuals and locations that attract recurrent rail-based foraging.


Assuntos
Comportamento Alimentar , Parques Recreativos , Ferrovias , Estações do Ano , Ursidae , Animais , Canadá , Dieta , Grão Comestível , Fezes , Feminino , Cabelo/química , Masculino , Isótopos de Nitrogênio/análise , Isótopos de Enxofre/análise
5.
J Anim Ecol ; 85(1): 32-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25950737

RESUMO

The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species.


Assuntos
Distribuição Animal , Ecologia/métodos , Ecossistema , Etologia/métodos , Modelos Biológicos , Rena/fisiologia , Animais , Ecologia/instrumentação , Etologia/instrumentação , Movimento , Noruega , Tecnologia de Sensoriamento Remoto/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA