Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1358986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628939

RESUMO

Despite its proven research applications, it remains unknown whether surface electromyography (sEMG) can be used clinically to discriminate non-lame from lame conditions in horses. This study compared the classification performance of sEMG absolute value (sEMGabs) and asymmetry (sEMGasym) parameters, alongside validated kinematic upper-body asymmetry parameters, for distinguishing non-lame from induced fore- (iFL) and hindlimb (iHL) lameness. Bilateral sEMG and 3D-kinematic data were collected from clinically non-lame horses (n = 8) during in-hand trot. iFL and iHL (2-3/5 AAEP) were induced on separate days using a modified horseshoe, with baseline data initially collected each day. sEMG signals were DC-offset removed, high-pass filtered (40 Hz), and full-wave rectified. Normalized, average rectified value (ARV) was calculated for each muscle and stride (sEMGabs), with the difference between right and left-side ARV representing sEMGasym. Asymmetry parameters (MinDiff, MaxDiff, Hip Hike) were calculated from poll, withers, and pelvis vertical displacement. Receiver-operating-characteristic (ROC) and area under the curve (AUC) analysis determined the accuracy of each parameter for distinguishing baseline from iFL or iHL. Both sEMG parameters performed better for detecting iHL (0.97 ≥ AUC ≥ 0.48) compared to iFL (0.77 ≥ AUC ≥ 0.49). sEMGabs performed better (0.97 ≥ AUC ≥ 0.49) than sEMGasym (0.76 ≥ AUC ≥ 0.48) for detecting both iFL and iHL. Like previous studies, MinDiff Poll and Pelvis asymmetry parameters (MinDiff, MaxDiff, Hip Hike) demonstrated excellent discrimination for iFL and iHL, respectively (AUC > 0.95). Findings support future development of multivariate lameness-detection approaches that combine kinematics and sEMG. This may provide a more comprehensive approach to diagnosis, treatment, and monitoring of equine lameness, by measuring the underlying functional cause(s) at a neuromuscular level.

2.
Animals (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37889657

RESUMO

This study compared muscle activity and movement between the leading (Ld) and trailing (Tr) fore- (F) and hindlimbs (H) of horses cantering overground. Three-dimensional kinematic and surface electromyography (sEMG) data were collected from right triceps brachii, biceps femoris, middle gluteal, and splenius from 10 ridden horses during straight left- and right-lead canter. Statistical parametric mapping evaluated between-limb (LdF vs. TrF, LdH vs. TrH) differences in time- and amplitude-normalized sEMG and joint angle-time waveforms over the stride. Linear mixed models evaluated between-limb differences in discrete sEMG activation timings, average rectified values (ARV), and spatio-temporal kinematics. Significantly greater gluteal ARV and activity duration facilitated greater limb retraction, hip extension, and stifle flexion (p < 0.05) in the TrH during stance. Earlier splenius activation during the LdF movement cycle (p < 0.05), reflected bilateral activation during TrF/LdH diagonal stance, contributing to body pitching mechanisms in canter. Limb muscles were generally quiescent during swing, where significantly greater LdF/H protraction was observed through greater elbow and hip flexion (p < 0.05), respectively. Alterations in muscle activation facilitate different timing and movement cycles of the leading and trailing limbs, which justifies equal training on both canter leads to develop symmetry in muscular strength, enhance athletic performance, and mitigate overuse injury risks.

3.
Front Vet Sci ; 9: 989522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425119

RESUMO

The relationship between lameness-related adaptations in equine appendicular motion and muscle activation is poorly understood and has not been studied objectively. The aim of this study was to compare muscle activity of selected fore- and hindlimb muscles, and movement of the joints they act on, between baseline and induced forelimb (iFL) and hindlimb (iHL) lameness. Three-dimensional kinematic data and surface electromyography (sEMG) data from the fore- (triceps brachii, latissimus dorsi) and hindlimbs (superficial gluteal, biceps femoris, semitendinosus) were bilaterally and synchronously collected from clinically non-lame horses (n = 8) trotting over-ground (baseline). Data collections were repeated during iFL and iHL conditions (2-3/5 AAEP), induced on separate days using a modified horseshoe. Motion asymmetry parameters and continuous joint and pro-retraction angles for each limb were calculated from kinematic data. Normalized average rectified value (ARV) and muscle activation onset, offset and activity duration were calculated from sEMG signals. Mixed model analysis and statistical parametric mapping, respectively, compared discrete and continuous variables between conditions (α= 0.05). Asymmetry parameters reflected the degree of iFL and iHL. Increased ARV occurred across muscles following iFL and iHL, except non-lame side forelimb muscles that significantly decreased following iFL. Significant, limb-specific changes in sEMG ARV, and activation timings reflected changes in joint angles and phasic shifts of the limb movement cycle following iFL and iHL. Muscular adaptations during iFL and iHL are detectable using sEMG and primarily involve increased bilateral activity and phasic activation shifts that reflect known compensatory movement patterns for reducing weightbearing on the lame limb. With further research and development, sEMG may provide a valuable diagnostic aid for quantifying the underlying neuromuscular adaptations to equine lameness, which are undetectable through human observation alone.

4.
Am J Vet Res ; 82(1): 39-47, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33369493

RESUMO

OBJECTIVE: To evaluate the ability of novel legwear designed to limit extension of the metacarpophalangeal joint (MCPJ) to redirect loading forces from the flexor apparatus during walk, trot, and canter on a treadmill and during unrestrained and restrained activity in a stall. ANIMALS: 6 adult horses without musculoskeletal disease. PROCEDURES: Legwear-derived force data were recorded under 4 conditions: inactive state (unlimited legwear extension) and 3 active (restrictive) states (mild, 30° extension; moderate, 20° extension; or maximum, 10° extension). Associations between peak legwear loads and torques among legwear states and treadmill gaits and stall activities were assessed. The hair coat and skin of the forelimbs were examined for any legwear-induced adverse effects after testing. RESULTS: During the treadmill exercises, moderate restriction of legwear extension resulted in significantly higher peak load and torque than mild restriction, and faster speeds (canter vs walk or trot and trot vs walk) yielded significantly higher peak load and torque. During in-stall activity, maximum restriction of legwear extension yielded significantly higher peak load and torque than moderate restriction. Unrestrained in-stall activity resulted in significantly higher peak load and torque than restrained activity. The legwear caused minimal adverse effects on the hair coat and skin of the forelimbs. CONCLUSIONS AND CLINICAL RELEVANCE: Findings suggested that the legwear variably reduced peak loads on the flexor apparatus. Extension of the MCPJ may be incrementally adjusted through the legwear such that return to activity may be controlled, and controlled return to activity is crucial for rehabilitating flexor apparatus injuries.


Assuntos
Membro Anterior , Marcha , Animais , Fenômenos Biomecânicos , Cavalos , Articulação Metacarpofalângica , Caminhada
5.
Am J Vet Res ; 82(1): 48-54, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33369494

RESUMO

OBJECTIVE: To investigate the effects of novel legwear designed to limit metacarpophalangeal joint (MCPJ) extension and redirect loading forces from the flexor apparatus through analyses of 2-D kinematic and kinetic data. ANIMALS: 6 adult horses without musculoskeletal disease. PROCEDURES: Horses were subjected to 4 treatments: control (no legwear), inactive legwear (unlimited legwear extension), and active legwear with mild (30°) and moderate (20°) legwear extension limitation. Two-dimensional kinematic data were collected for the right forelimb (FL) during walk and trot and from leading and trailing FLs during canter on a treadmill. Ground reaction force (GRF) data were collected from FLs during overground walk and trot. Peak MCPJ angle and angular velocity were calculated from kinematic data, and peak force and average loading rate were calculated from vertical GRF data during the stance phase of the gait. Interactions between gait and treatment were determined via ANOVA. RESULTS: Interactions between gait and treatment for peak MCPJ angle were significant. Significant reductions in MCPJ angle were noted between the control treatment and legwear with moderate extension limitation for trot and canter (leading and trailing FL) and between inactive legwear and legwear with moderate extension limitation for trot and leading FL during canter. Interactions among peak MCPJ angular velocity, peak vertical GRF, and average loading rate of the vertical GRF showed nonsignificance. CONCLUSIONS AND CLINICAL RELEVANCE: Significant reductions in MCPJ extension without significant alterations to peak vertical GRF suggested the legwear's ability to redistribute internal forces. Findings suggested that the legwear may be beneficial for horses rehabilitating from flexor apparatus injuries.


Assuntos
Marcha , Caminhada , Animais , Fenômenos Biomecânicos , Teste de Esforço/veterinária , Membro Anterior , Cavalos , Articulação Metacarpofalângica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA