Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1421680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170678

RESUMO

Huntington's disease (HD) is a rare genetic neurodegenerative disorder caused by an expansion of CAG repeats in the Huntingtin (HTT) gene. One hypothesis suggests that the mutant HTT gene contributes to HD neuropathology through transcriptional dysregulation involving microRNAs (miRNAs). In particular, the miR-132/212 cluster is strongly diminished in the HD brain. This study explores the effects of miR-132/212 deficiency specifically in adult HD zQ175 mice. The absence of miR-132/212 did not impact body weight, body temperature, or survival rates. Surprisingly, miR-132/212 loss seemed to alleviate, in part, the effects on endogenous Htt expression, HTT inclusions, and neuronal integrity in HD zQ175 mice. Additionally, miR-132/212 depletion led to age-dependent improvements in certain motor functions. Transcriptomic analysis revealed alterations in HD-related networks in WT- and HD zQ175-miR-132/212-deficient mice, including significant overlap in BDNF and Creb1 signaling pathways. Interestingly, however, a higher number of miR-132/212 gene targets was observed in HD zQ175 mice lacking the miR-132/212 cluster, especially in the striatum. These findings suggest a nuanced interplay between miR-132/212 expression and HD pathogenesis, providing potential insights into therapeutic interventions. Further investigation is needed to fully understand the underlying mechanisms and therapeutic potential of modulating miR-132/212 expression during HD progression.

2.
Neuroscience ; 518: 54-63, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868517

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion of CAG repeats in the Huntingtin (HTT) gene. Accumulating evidence suggests that the microtubule-associated tau protein participates in the pathogenesis of HD. Recently, we have identified changes in tau alternative splicing of exons 2, 3 and 10 in the putamen of HD patients (St-Amour et al, 2018). In this study, we sought to determine whether tau mis-splicing events were equally observed in other brain regions that are less prone to neurodegeneration. Using Western blot and PCR, we characterized the relationship between MAPT splicing of exons 2, 3 and 10, tauopathy and Htt pathologies, as well as neurodegeneration markers in matching putamen and cortical samples from HD (N = 48) and healthy control (N = 25) subjects. We first show that levels of 4R-tau (exon 10 inclusion) isoforms are higher in both the putamen and the cortex of individuals with HD, consistent with earlier findings. On the other hand, higher 0N-tau (exclusion of exons 2 and 3) and lower 1N-tau (exclusion of exon 3) isoforms were seen exclusively in the putamen of HD individuals. Interestingly, investigated splicing factors were deregulated in both regions whereas exon 2 differences coincided with increased tau hyperphosphorylation, aggregation and markers of neurodegeneration. Overall, these results imply a differential regulation of tau exon 2 and exon 10 alternative splicing in HD putamen that could provide a useful biomarker or therapeutic target.


Assuntos
Doença de Huntington , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Huntington/patologia , Encéfalo/metabolismo , Processamento Alternativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Éxons , Proteína Huntingtina/genética
3.
Acta Neuropathol Commun ; 10(1): 106, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869509

RESUMO

Altered microRNA (miRNA) expression is a common feature of Huntington's disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.


Assuntos
Doença de Huntington , MicroRNAs , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , MicroRNAs/metabolismo , Putamen/metabolismo
4.
Brain ; 145(9): 3035-3057, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34936701

RESUMO

Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Autofagia/fisiologia , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Neurônios
5.
Front Neurol ; 11: 578720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117266

RESUMO

In the past decade, several groups have reported that microRNAs (miRNAs) can participate in the regulation of tau protein at different levels, including its expression, alternative splicing, phosphorylation, and aggregation. These observations are significant, since the abnormal regulation and deposition of tau is associated with nearly 30 neurodegenerative disorders. Interestingly, miRNA profiles go awry in tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. Understanding the role and impact of miRNAs on tau biology could therefore provide important insights into disease risk, diagnostics, and perhaps therapeutics. In this Perspective article, we discuss recent advances in miRNA research related to tau. While proof-of-principle studies hold promise, physiological validation remains limited. To help fill this gap, we describe herein a pure tauopathy mouse model deficient for the miR-132/212 cluster. This miRNA family is strongly downregulated in human tauopathies and shown to regulate tau in vitro and in vivo. No significant differences in survival, motor deficits or body weight were observed in PS19 mice lacking miR-132/212. Age-specific effects were seen on tau expression and phosphorylation but not aggregation. Moreover, various miR-132/212 targets previously implicated in tau modulation were unaffected (GSK-3ß, Foxo3a, Mapk1, p300) or, unexpectedly, reduced (Mapk3, Foxo1, p300, Calpain 2) in miR-132/212-deficient PS19 mice. These observations highlight the challenges of miRNA research in living models, and current limitations of transgenic tau mouse models lacking functional miRNA binding sites. Based on these findings, we finally recommend different strategies to better understand the role of miRNAs in tau physiology and pathology.

6.
Schizophr Res ; 219: 19-24, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31320175

RESUMO

BACKGROUND: Visual defects are documented in psychiatric disorders such as schizophrenia, bipolar disorder and major depressive disorder. One of the most consistent alterations in patients is a change in cone and rod electroretinographic (ERG) responses. We previously showed a reduced rod b-wave amplitude in a small sample of young offspring born to an affected parent. A confirmation of the patients ERG anomalies in young offspring at high genetic risk would offer a new approach to the neurodevelopmental investigation of the illness. We thus investigated cone and rod responses in a larger sample of young healthy high-risk offspring. METHODS: The ERG was recorded in 99 offspring of patients having DMS-IV schizophrenia, bipolar or major depressive disorder (mean age 16.03; SD 6.14) and in 223 healthy controls balanced for sex and age. The a- and b-wave latency and amplitude of cones and rods were recorded. RESULTS: Cone b-wave latency was increased in offspring (ES = 0.31; P = 0.006) whereas rod b-wave amplitude was decreased (ES = -0.37; P = 0.001) and rod latency was increased (ES = 0.35; P = 0.002). CONCLUSIONS: The ERG rod and cone abnormal response previously reported in adult patients having schizophrenia, bipolar disorder or major depressive disorder are detectable in genetically high-risk offspring as early as in childhood and adolescence. Moreover, a gradient of effect sizes among offspring and the three adult diagnoses was found in the cone response. This suggests that ERG waveform as a risk endophenotype might become part of the definition of a "childhood risk syndrome".


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Adolescente , Adulto , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Eletrorretinografia , Humanos , Retina , Esquizofrenia/genética
7.
J Neuroinflammation ; 16(1): 3, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611289

RESUMO

BACKGROUND: Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer's disease (AD), yet their role in the pathogenesis still remains poorly defined. AIM AND METHODS: We used the triple transgenic mouse model (3xTg-AD) to reproduce Aß (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). RESULTS: In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. CONCLUSION: Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.


Assuntos
Imunidade Adaptativa/fisiologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Citocinas/metabolismo , Linfócitos/patologia , Imunidade Adaptativa/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Medula Óssea/patologia , Polaridade Celular/genética , Granulócitos/patologia , Humanos , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Mutação/genética , Emaranhados Neurofibrilares , Presenilina-1/genética , Baço/patologia , Proteínas tau/genética
8.
J Neurol Neurosurg Psychiatry ; 90(3): 272-283, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567722

RESUMO

Huntington's disease (HD) is a hereditary disorder that typically manifests in adulthood with a combination of motor, cognitive and psychiatric problems. The pathology is caused by a mutation in the huntingtin gene which results in the production of an abnormal protein, mutant huntingtin (mHtt). This protein is ubiquitously expressed and known to confer toxicity to multiple cell types. We have recently reported that HD brains are also characterised by vascular abnormalities, which include changes in blood vessel density/diameter as well as increased blood-brain barrier (BBB) leakage. OBJECTIVES: Seeking to elucidate the origin of these vascular and BBB abnormalities, we studied platelets that are known to play a role in maintaining the integrity of the vasculature and thrombotic pathways linked to this, given they surprisingly contain the highest concentration of mHtt of all blood cells. METHODS: We assessed the functional status of platelets by performing ELISA, western blot and RNA sequencing in a cohort of 71 patients and 68 age- and sex-matched healthy control subjects. We further performed haemostasis and platelet depletion tests in the R6/2 HD mouse model. RESULTS: Our findings indicate that the platelets in HD are dysfunctional with respect to the release of angiogenic factors and functions including thrombosis, angiogenesis and vascular haemostasis. CONCLUSION: Taken together, our results provide a better understanding for the impact of mHtt on platelet function.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Proteína Huntingtina/sangue , Doença de Huntington/sangue , Ativação Plaquetária/fisiologia , Adulto , Idoso , Proteínas Angiogênicas/sangue , Animais , Fatores de Coagulação Sanguínea/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Fator 2 de Crescimento de Fibroblastos/sangue , Humanos , Doença de Huntington/complicações , Masculino , Camundongos , Pessoa de Meia-Idade , Contagem de Plaquetas
9.
Neurobiol Dis ; 124: 163-175, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30408591

RESUMO

The production of extracellular vesicles (EV) is a ubiquitous feature of eukaryotic cells but pathological events can affect their formation and constituents. We sought to characterize the nature, profile and protein signature of EV in the plasma of Parkinson's disease (PD) patients and how they correlate to clinical measures of the disease. EV were initially collected from cohorts of PD (n = 60; Controls, n = 37) and Huntington's disease (HD) patients (Pre-manifest, n = 11; manifest, n = 52; Controls, n = 55) - for comparative purposes in individuals with another chronic neurodegenerative condition - and exhaustively analyzed using flow cytometry, electron microscopy and proteomics. We then collected 42 samples from an additional independent cohort of PD patients to confirm our initial results. Through a series of iterative steps, we optimized an approach for defining the EV signature in PD. We found that the number of EV derived specifically from erythrocytes segregated with UPDRS scores corresponding to different disease stages. Proteomic analysis further revealed that there is a specific signature of proteins that could reliably differentiate control subjects from mild and moderate PD patients. Taken together, we have developed/identified an EV blood-based assay that has the potential to be used as a biomarker for PD.


Assuntos
Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Parkinson/sangue , Idoso , Biomarcadores/sangue , Contagem de Células Sanguíneas , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Doença de Huntington/sangue , Doença de Huntington/diagnóstico , Doença de Huntington/patologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Proteômica
10.
J Neurol ; 265(11): 2704-2712, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30209650

RESUMO

The production and release of extracellular vesicles (EV) is a property shared by all eukaryotic cells and a phenomenon frequently exacerbated in pathological conditions. The protein cargo of EV, their cell type signature and availability in bodily fluids make them particularly appealing as biomarkers. We recently demonstrated that platelets, among all types of blood cells, contain the highest concentrations of the mutant huntingtin protein (mHtt)-the genetic product of Huntington's disease (HD), a neurodegenerative disorder which manifests in adulthood with a complex combination of motor, cognitive and psychiatric deficits. Herein, we used a cohort of 59 HD patients at all stages of the disease, including individuals in pre-manifest stages, and 54 healthy age- and sex-matched controls, to evaluate the potential of EV derived from platelets as a biomarker. We found that platelets of pre-manifest and manifest HD patients do not release more EV even if they are activated. Importantly, mHtt was not found within EV derived from platelets, despite them containing high levels of this protein. Correlation analyses also failed to reveal an association between the number of platelet-derived EV and the age of the patients, the number of CAG repeats, the Unified Huntington Disease Rating Scale total motor score, the Total Functional Capacity score or the Burden of Disease score. Our data would, therefore, suggest that EV derived from platelets with HD is not a valuable biomarker in HD.


Assuntos
Biomarcadores/sangue , Plaquetas/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Huntington/sangue , Adulto , Idoso , Feminino , Humanos , Proteína Huntingtina/metabolismo , Masculino , Pessoa de Meia-Idade
11.
Cell Rep ; 24(6): 1397-1406, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089251

RESUMO

Many neurodegenerative diseases are characterized by the presence of intracellular protein aggregates, resulting in alterations in autophagy. However, the consequences of impaired autophagy for neuronal function remain poorly understood. In this study, we used cell culture and mouse models of huntingtin protein aggregation as well as post-mortem material from patients with Huntington's disease to demonstrate that Argonaute-2 (AGO2) accumulates in the presence of neuronal protein aggregates and that this is due to impaired autophagy. Accumulation of AGO2, a key factor of the RNA-induced silencing complex that executes microRNA functions, results in global alterations of microRNA levels and activity. Together, these results demonstrate that impaired autophagy found in neurodegenerative diseases not only influences protein aggregation but also directly contributes to global alterations of intracellular post-transcriptional networks.


Assuntos
Proteínas Argonautas/genética , Autofagia/fisiologia , Doença de Huntington/genética , MicroRNAs/metabolismo , Humanos
12.
Synapse ; 72(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29341269

RESUMO

No model fully recapitulates the neuropathology of Alzheimer's disease (AD). Although the triple-transgenic mouse model of AD (3xTg-AD) expresses Aß plaques and tau-laden neurofibrillary tangles, as well as synaptic and behavioral deficits, it does not display frank neuronal loss. Because old age is the most important risk factor in AD, senescence-related interactions might be lacking to truly establish an AD-like environment. To investigate this hypothesis, we bred the 3xTg-AD mouse with the senescence-accelerated mouse prone 8 (SAMP8), a model of accelerated aging. We generated four groups of heterozygous mice with either the SAMP8 or SAMR1 (senescence-resistant-1) genotype, along with either the 3xTg-AD or non-transgenic (NonTg) genotype. Despite no differences among groups in total latency to escape the Barnes maze, a greater number of errors were noticed before entering the target hole in 19-month-old P8/3xTg-AD mice at day 5, compared to other groups. Postmortem analyses revealed increased cortical levels of phospho-tau (Thr231) in female P8/3xTg-AD mice (+277% vs. R1/3xTg-AD mice), without other tau-related changes. Female P8/3xTg-AD mice exhibited higher cortical soluble Aß40 and Aß42 concentrations (Aß40, +85%; Aß42, +35% vs. R1/3xTg-AD), whereas insoluble forms remained unchanged. Higher Aß42 load coincided with increased astroglial activation in female P8/3xTg-AD mice, as measured with glial fibrillary acidic protein (GFAP) (+57% vs. R1/3xTg-AD mice). To probe neuronal degeneration, concentrations of neuronal nuclei (NeuN) were measured, but no differences were detected between groups. Altogether, the SAMP8 genotype had deleterious effects on spatial memory and exerted female-specific aggravation of AD neuropathology without overt neurodegeneration in 3xTg-AD mice.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Apolipoproteínas E/metabolismo , Peso Corporal/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Fragmentos de Peptídeos/metabolismo , Memória Espacial/fisiologia , Especificidade da Espécie , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Acta Neuropathol ; 135(2): 249-265, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134321

RESUMO

Accumulating evidence highlights the potential role of mixed proteinopathies (i.e., abnormal protein aggregation) in the development of clinical manifestations of neurodegenerative diseases (NDD). Huntington's disease (HD) is an inherited NDD caused by autosomal-dominant expanded CAG trinucleotide repeat mutation in the gene coding for Huntingtin (Htt). Previous studies have suggested the coexistence of phosphorylated-Tau, α-synuclein (α-Syn) and TAR DNA-binding protein 43 (TDP-43) inclusions in HD. However, definite evidence that HD pathology in humans can be accompanied by other proteinopathies is still lacking. Using human post-mortem putamen samples from 31 controls and 56 HD individuals, we performed biochemical analyses of the expression, oligomerization and aggregation of Tau, α-Syn, TDP-43, and Amyloid precursor protein (APP)/Aß. In HD brain, we observed reduced soluble protein (but not mRNA) levels of Htt, α-Syn, and Tau. Our results also support abnormal phosphorylation of Tau in more advanced stages of disease. Aberrant splicing of Tau exons 2, 3 (exclusion) and 10 (inclusion) was also detected in HD patients, leading to higher 0N4R and lower 1N3R isoforms. Finally, following formic acid extraction, we observed increased aggregation of TDP-43, α-Syn, and phosphorylated-Tau during HD progression. Notably, we observed that 88% of HD patients with Vonsattel grade 4 neuropathology displayed at least one non-Htt proteinopathy compared to 29% in controls. Interestingly, α-Syn aggregation correlated with Htt, TDP-43 and phosphorylated-Tau in HD but not in controls. The impact of this work is twofold: (1) it provides compelling evidences that Tau, α-Syn and TDP-43 proteinopathies are increased in HD, and (2) it suggests the involvement of common mechanisms leading to abnormal accumulation of aggregation-prone proteins in NDD. Further studies will be needed to decipher the impact of these proteinopathies on clinical manifestation of HD.


Assuntos
Doença de Huntington/complicações , Doença de Huntington/patologia , Deficiências na Proteostase/complicações , Deficiências na Proteostase/patologia , Putamen/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Precursor de Proteína beta-Amiloide/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , Deficiências na Proteostase/metabolismo , Putamen/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
14.
Neurobiol Aging ; 43: 47-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255814

RESUMO

The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Regulação da Temperatura Corporal , Temperatura , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Temperatura Corporal/fisiologia , Temperatura Baixa/efeitos adversos , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Camundongos Transgênicos , Norepinefrina/metabolismo , Fosforilação , Sinapses/patologia , Proteína Desacopladora 1/metabolismo , Proteínas tau/metabolismo
15.
J Nutr Biochem ; 30: 133-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27012630

RESUMO

Pre-clinical data collected in mouse models of Parkinson's disease (PD) support the neuroprotective potential of omega-3 polyunsaturated fatty acids (n-3 PUFA)-enriched diet on the dopaminergic (DAergic) system. In this study, we investigated the effects of an n-3 PUFA-rich diet using a neurorescue/neurorestorative paradigm. C57BL/6 adult mice were submitted to a striatal stereotaxic injection of the neurotoxin 6-hydroxydopamine (6-OHDA) to induce striatal DAergic denervation and subsequent nigral DAergic cell loss. Three weeks post-lesion, mice received either a docosahexaenoic acid (DHA)-enriched or a control diet for a period of 6 weeks. HPLC analyses revealed a 111% post-lesion increase in striatal dopamine levels in the DHA-fed animals compared to controls (ctrl, P<0.05), although no improvement in the motor behavior was observed. DHA treatment led to a 89% rise in tyrosine-hydroxylase (TH)-immunoreactive terminals within the striatum (P<0.05) in lesioned animals. Despite the fact that DHA did not change the number of TH+ neurons in the substantia nigra pars compacta (SNpc), morphological analyses revealed an increased in perimeters (+7%) and areas (+21%) of DAergic cell bodies in treated animals. Collectively, our results suggest that DHA induces a partial neurorescue/neurorestoration of the DAergic system and support further studies to investigate the potential of a diet-based intervention, or at least the combination of such approach, to current treatments in PD.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Oxidopamina/administração & dosagem , Animais , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
16.
Acta Neuropathol ; 131(4): 481-504, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689922

RESUMO

Years of research have highlighted the importance of the immune system in Alzheimer's disease (AD), a system that, if manipulated during strategic time windows, could potentially be tackled to treat this disorder. However, to minimize adverse effects, it is essential to first grasp which exact aspect of it may be targeted. Several clues have been collected over the years regarding specific immune players strongly modulated during different stages of AD progression. However, the inherent complexity of the immune system as well as conflicting data make it quite challenging to pinpoint a specific immune target in AD. In this review, we discuss immune-related abnormalities observed in the periphery as well as in the brain of AD patients, in relation to known risk factors of AD such as genetics, type-2 diabetes or obesity, aging, physical inactivity and hypertension. Although not investigated yet in clinical trials, C5 complement system component, CD40/CD40L interactions and the CXCR2 pathway are altered in AD patients and may represent potential therapeutic targets. Immunotherapies tested in a clinical context, those aiming to attenuate the innate immune response and those used to facilitate the removal of pathological proteins, are further discussed to try and understand the causes of the limited success reached. The prevailing eagerness to move basic research data to clinic should not overshadow the fact that a careful preclinical characterization of a drug is still required to ultimately improve the chance of clinical success. Finally, specific elements to consider prior to initiate large-scale trials are highlighted and include the replication of preclinical data, the use of small-scale human studies, the sub-typing of AD patients and the determination of pharmacokinetic and pharmacodynamics parameters such as brain bioavailability and target engagement.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Imunoterapia/métodos , Animais , Humanos
18.
FASEB J ; 29(10): 4273-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26108977

RESUMO

Alzheimer's disease (AD) has been associated with type II diabetes (T2D) and obesity in several epidemiologic studies. To determine whether AD neuropathology can cause peripheral metabolic impairments, we investigated metabolic parameters in the triple-transgenic (3xTg)-AD mouse model of AD, compared with those in nontransgenic (non-Tg) controls, at 6, 8, and 14 mo of age. We found a more pronounced cortical Aß accumulation (2- and 3.5-fold increase in Aß42 in the soluble and insoluble protein fractions, respectively) in female 3xTg-AD mice than in the males. Furthermore, female 3xTg-AD mice displayed a significant deterioration in glucose tolerance (AUC, +118% vs. non-Tg mice at 14 mo). Fasting plasma insulin levels rose 2.5-fold from 6 to 14 mo of age in female 3xTg-AD mice. Glucose intolerance and cortical amyloid pathology worsened with age, and both were more pronounced in the females. Pancreatic amyloidopathy was revealed and could underlie the observed deficit in glycemic response in 3xTg-AD mice. The present results suggest that AD-like neuropathology extends to the pancreas in the 3xTg-AD mouse, leading to glucose intolerance and contributing to a pathologic self-amplifying loop between AD and T2D.


Assuntos
Doença de Alzheimer/sangue , Glicemia/metabolismo , Intolerância à Glucose/sangue , Insulina/sangue , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Western Blotting , Córtex Cerebral/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Fragmentos de Peptídeos/metabolismo , Fatores Sexuais
19.
Ann Neurol ; 78(2): 160-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25866151

RESUMO

OBJECTIVE: Although the underlying cause of Huntington's disease (HD) is well established, the actual pathophysiological processes involved remain to be fully elucidated. In other proteinopathies such as Alzheimer's and Parkinson's diseases, there is evidence for impairments of the cerebral vasculature as well as the blood-brain barrier (BBB), which have been suggested to contribute to their pathophysiology. We investigated whether similar changes are also present in HD. METHODS: We used 3- and 7-Tesla magnetic resonance imaging as well as postmortem tissue analyses to assess blood vessel impairments in HD patients. Our findings were further investigated in the R6/2 mouse model using in situ cerebral perfusion, histological analysis, Western blotting, as well as transmission and scanning electron microscopy. RESULTS: We found mutant huntingtin protein (mHtt) aggregates to be present in all major components of the neurovascular unit of both R6/2 mice and HD patients. This was accompanied by an increase in blood vessel density, a reduction in blood vessel diameter, as well as BBB leakage in the striatum of R6/2 mice, which correlated with a reduced expression of tight junction-associated proteins and increased numbers of transcytotic vesicles, which occasionally contained mHtt aggregates. We confirmed the existence of similar vascular and BBB changes in HD patients. INTERPRETATION: Taken together, our results provide evidence for alterations in the cerebral vasculature in HD leading to BBB leakage, both in the R6/2 mouse model and in HD patients, a phenomenon that may, in turn, have important pathophysiological implications.


Assuntos
Vasos Sanguíneos/patologia , Barreira Hematoencefálica/patologia , Doença de Huntington/patologia , Neostriado/irrigação sanguínea , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Adulto , Idoso , Animais , Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Circulação Cerebrovascular/genética , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Neostriado/metabolismo , Neostriado/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Tamanho do Órgão , Imagem de Perfusão , Proteínas de Junções Íntimas/metabolismo , Transcitose/genética
20.
J Cereb Blood Flow Metab ; 35(1): 86-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25335802

RESUMO

Human apolipoprotein E (APOE) exists in three isoforms ɛ2, ɛ3, and ɛ4, of which APOE4 is the main genetic risk factor of Alzheimer's disease (AD). As cerebrovascular defects are associated with AD, we tested whether APOE genotype has an impact on the integrity and function of the blood-brain barrier (BBB) in human APOE-targeted replacement mice. Using the quantitative in situ brain perfusion technique, we first found lower (13.0% and 17.0%) brain transport coefficient (Clup) of [(3)H]-diazepam in APOE4 mice at 4 and 12 months, compared with APOE2 and APOE3 mice, reflecting a decrease in cerebral vascularization. Accordingly, results from immunohistofluorescence experiments revealed a structurally reduced cerebral vascularization (26% and 38%) and thinner basement membranes (30% and 35%) in 12-month-old APOE4 mice compared with APOE2 and APOE3 mice, suggesting vascular atrophy. In addition, APOE4 mice displayed a 29% reduction in [(3)H]-d-glucose transport through the BBB compared with APOE2 mice without significant changes in the expression of its transporter GLUT1 in brain capillaries. However, an increase of 41.3% of receptor for advanced glycation end products (RAGE) was found in brain capillaries of 12-month-old APOE4 mice. In conclusion, profound divergences were observed between APOE genotypes at the cerebrovascular interface, suggesting that APOE4-induced BBB anomalies may contribute to AD development.


Assuntos
Apolipoproteína E4/genética , Barreira Hematoencefálica/fisiologia , Circulação Cerebrovascular/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Diazepam/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Perfusão , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA