Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 227: 115274, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774791

RESUMO

We present a novel procedure to monitor the fluctuations of the levels of IGF-1 in capillary blood in the framework of doping control analysis. Being an endogenous hormone, direct methods are not applicable, so the most effective way to detect the intake of the exogenous hormone would be based on the longitudinal monitoring of the athlete. We have therefore followed the individual variability, in four subjects (two males and two females), of the levels of IGF-1 in capillary blood samples collected three times per day for five days, then once a week for at least two months. Analyses were performed by liquid chromatography coupled to tandem mass spectrometry following a bottom-up approach. The whole protocol, from the sample collection to the instrumental analysis, was validated according to the World Anti-Doping Agency's guidelines and ISO17025. The analytical protocol showed to be fit for purpose in terms of sensitivity (LOD 25 ng/mL and LOI 35 ng/mL), selectivity (no interferences were detected at the retention time of IGF-1 and the internal standard), and repeatability (CV<10%). The linearity was confirmed in the range of 50-1000 ng/mL (correlation coefficient R2 >0.995, with a % relative bias of the experimental concentration of the different calibrators used for the estimation of the linearity lower than 20% for the lowest level and than 15% for the other levels). Stability studies were also performed, also to establish the optimal conditions for transport and storage: samples were stable at 4 °C for up to 72 h and at -20 °C and -80 °C for up to three months. Our preliminary results indicate that, in all subjects, the levels of IGF-1 did not present significant circadian fluctuations and remained stable during the entire period of the study (2-3 months, depending on the subject). The stability over time of IGF-1 levels in capillary blood indicates the possibility of detecting the intake of the non-endogenous hormone based on a longitudinal approach, as it is modeled in the framework of the endocrinological module of the athlete biological passport.


Assuntos
Dopagem Esportivo , Fator de Crescimento Insulin-Like I , Feminino , Humanos , Masculino , Atletas , Cromatografia Líquida/métodos , Dopagem Esportivo/prevenção & controle , Hormônios , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/química , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos
2.
ACS Omega ; 7(36): 31845-31868, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36119994

RESUMO

We present a quick and simple multi-targeted analytical workflow based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry for the screening in dried blood spots and dried plasma spots of a wide variety of drugs with different chemical properties. Seven different microsampling devices were evaluated in view of their application for the detection of the selected target analytes in the framework of doping control analysis. The extraction of the analytes was optimized by assessing the efficacy of protocols based on ultrasonication with aqueous buffers and/or organic solvents of different polarities. Optimal recoveries were obtained by using pure methanol or mixtures of methanol/acetonitrile and methanol/isopropanol, depending on both the device and the target analytes. The method was fully validated according to both ISO17025 and the requirements of the World Anti-Doping Agency: all the analytes were clearly distinguishable from the matrix, with limits of detection in the range of 0.1-3.0 ng mL-1. Stability studies simulating the storage of samples before the analysis and in view of a possible re-analysis showed that most of the analytes were stable for at least 24 h at 50 °C and for at least 3 weeks at 25 and at 4 °C. The real applicability of the method was assessed by analyzing the samples collected after the administration of two model drugs, acetazolamide and deflazacort. The performance of the method was confirmed to be fit for purpose, and data obtained in blood can also be used to complement those available in urine, allowing to refine the knowledge concerning the pharmacokinetic profiles.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34678705

RESUMO

We have investigated the metabolic profile of N-ethyl heptedrone, a new designer synthetic stimulant drug, by using data independent acquisition mass spectrometry. Phase I and phase II metabolism was studied by in vitro models, followed by liquid-chromatography coupled to mass spectrometry, to characterize and pre-select the most diagnostic markers of intake. N-ethyl heptedrone was incubated in the presence of pooled human liver microsomes. The contribution of individual enzymatic isoforms in the formation of the phase I and phase II metabolites was further investigated by using human recombinant cDNA-expressed cytochrome P450 enzymesand uridine 5'-diphospho glucuronosyltransferases. The analytical workflow consisted of liquid-liquid extraction with tert-butyl-methyl-ether at alkaline pH, performed before (to investigate the phase I metabolic profile) and after (to investigate the glucuronidation profile) enzymatic hydrolysis. The separation, identification, and determination of the compounds formed in the in vitro experiments were carried out by using liquid chromatography coupled to either high- or low-resolution mass spectrometry. Data independent acquisition method, namely sequential window acquisition of all theoretical fragment-ion spectra (SWATH®) and product ion scan were selected for high-resolution mass spectrometry, whereas multiple reaction monitoring was used for low-resolution mass spectrometry. Thirteen phase-I metabolites were isolated, formed from reactions being catalyzed mainly by CYP1A2, CYP2C9, CYP2C19 and CYP2D6 and, to a lesser degree, by CYP3A4 and CYP3A5. The phase I biotransformation pathways included hydroxylation in different positions, reduction of the ketone group, carbonylation, N-dealkylation, and combinations of the above. Most of the hydroxylated metabolites underwent conjugation reactions to form the corresponding glucurono-conjugated metabolites. Based on our in vitro observation, the metabolic products resulting from reduction of the keto group, N-dealkylation and hydroxylation of the aliphatic chain appear to be the most diagnostic target analytes to be selected as markers of exposure to N-ethyl heptedrone.


Assuntos
Cromatografia Líquida/métodos , Cetonas/química , Cetonas/urina , Espectrometria de Massas/métodos , Biotransformação , Citocromo P-450 CYP3A/metabolismo , Drogas Desenhadas/análise , Drogas Desenhadas/metabolismo , Feminino , Humanos , Hidroxilação , Masculino , Metaboloma , Metabolômica , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Psicotrópicos/química , Psicotrópicos/urina , Quinazolinas/química , Quinazolinas/metabolismo
4.
J Anal Toxicol ; 45(2): 184-194, 2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32435795

RESUMO

This article presents newly developed screening and confirmation analytical procedures to detect the misuse of nine prolyl-hydroxylase inhibitors of the hypoxia-inducible factor: daprodustat, desidustat, FG2216, IOX2, IOX4, JNJ-42041935, molidustat, roxadustat and vadadustat, targeting either the parent drugs and/or their main metabolite(s). For the sample pretreatment, different extraction protocols and technologies were evaluated. The instrumental analysis was performed by ultra-high-performance liquid chromatography coupled to either high- or low-resolution mass spectrometry. The chromatographic separation was performed on a C18 column, employing water and acetonitrile, both containing 0.1% formic acid, as mobile phase. Detection was achieved using as analyzer either a triple quadrupole or an Orbitrap, with positive and negative electrospray ionization and different acquisition modes. Validation of the procedures was performed according to the ISO 17025 and World Anti-Doping Agency guidelines. The methods do not show any significant interference at the retention times of the analytes of interest. The extraction efficiency was estimated to be greater than 75% for all analytes and the matrix effect smaller than 35%. Detection capability was determined in the range of 0.25-2.0 for the screening procedure and in the range of 0.5-2.0 ng/mL for the confirmation procedure, that is, in a range of concentration small enough to reveal the abuse of the compounds considered, in case they are used as performance-enhancing agents. The repeatability of the relative retention times (CV% < 0.5) and of the relative abundances of the selected ion transitions, considered only in the case of triple quadrupole (CV% < 15), was confirmed to be fit for purpose to ensure the unambiguous identification of all the target analytes in human urine. The applicability of the newly developed methods was verified by the analysis of urine samples containing molidustat, roxadustat or daprodustat. The developed procedures enabled to detect the compounds under investigation and their main metabolites.


Assuntos
Inibidores de Prolil-Hidrolase/urina , Detecção do Abuso de Substâncias/métodos , Acetonitrilas , Barbitúricos , Líquidos Corporais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Glicina/análogos & derivados , Isoquinolinas , Limite de Detecção , Ácidos Picolínicos , Espectrometria de Massas em Tandem
5.
J Pharm Biomed Anal ; 195: 113849, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33383501

RESUMO

Analytical procedures to detect the misuse of selective androgen receptor modulators in human urine, targeting either the parent drugs and/or their main metabolites, were developed and validated. In detail, 19 target compounds belonging to 9 different chemical classes were considered: arylpropionamide (i.e., andarine (S4), ostarine (S22), S1, S6, S9 and S23), diarylhydantoin (i.e., GLPG0492), indole (i.e., LY2452473, GSK2881078), isoquinoline-carbonyle (i.e., PF-02620414), phenyl-oxadiazole (i.e., RAD140), pyrrolidinyl-benzonitrile (i.e., LGD4033), quinolinone (i.e., LGD2226, LGD3303), steroidal (i.e., Cl-4AS-1, MK0773 and TFM-4AS-1), and tropanol (i.e., AC-262536 and ACP105) derivatives. The metabolites of the target compounds considered were enzymatically synthesized by using human liver microsomes. Sample pre-treatment included enzymatic hydrolysis followed by liquid-liquid extraction at neutral pH. The instrumental analysis was performed by ultra-high-performance liquid chromatography coupled to either high- or low-resolution mass spectrometry. Validation was performed according to the ISO 17025 and the World Anti-Doping Agency guidelines. The analyses carried out on negative samples confirmed the method's selectivity, not showing any significant interferences at the retention times of the analytes of interest. Detection capability was determined in the range of 0.1-1.0 ng/mL for the screening procedure and 0.2-1.0 ng/mL for the confirmation procedure (except for GLPG0492 and GSK2881078). The recovery was greater than 80 % for all analytes, and the matrix effect was smaller than 35 %. The method also matched the criteria of the World Anti-Doping Agency in terms of repeatability of the relative retention times (CV% < 1.0) and of the relative abundances of the selected ion transitions (performed only in the case of triple quadrupole, CV% < 15), ensuring the correct identification of all the analytes considered. Urine samples containing andarine, ostarine, or LGD4033 were used to confirm the actual applicability of the selected analytical strategies. All target compounds (parent drugs and their main metabolites) were detected and correctly identified.


Assuntos
Dopagem Esportivo , Receptores Androgênicos , Antagonistas de Receptores de Andrógenos/urina , Androgênios/urina , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Espectrometria de Massas , Detecção do Abuso de Substâncias
6.
Drug Test Anal ; 10(11-12): 1670-1681, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30395700

RESUMO

The reactions involved in the metabolic pathways of SR9009 were characterized by liquid chromatography-mass spectrometry (LC-MS) to identify the most appropriate marker(s) of use. The effects of gender, genetic polymorphism, and drug-drug interaction on the metabolic profile of SR9009 were also evaluated. In vitro approaches were based on the use of human liver microsomes and cytochrome P450 isoforms. Sample preparation included an enzymatic hydrolysis (performed only for the phase II investigation) followed by liquid-liquid extraction. The chromatographic separation was carried out using a reverse-phase column; detection was performed by either a triple-quadrupole or a time-of-flight system in positive electrospray ionization and different acquisition modes. In the presence of human liver microsomes, SR9009 was biotransformed to 13 metabolites by CYP3A4, CYP3A5, CYP2C19, and CYP2D6 isoenzymes. The reactions included hydroxylation, de-alkylation, oxidation, and combinations thereof, the de-alkylated metabolites being the most abundant. Once formed the mentioned metabolites underwent glucuronidation. Concerning the effects of gender, genetic polymorphism, and drug-drug interaction on the metabolic profile of SR9009, our observation have shown the following: (a) No significant alterations were measured between female and male, (b) significant differences were registered using either the CYP2D6 or CYP2C19 allelic variants, and finally (c) significant alterations were registered in the presence of ketoconazole, miconazole, fluoxetine, nefazodone and paroxetine; moderate variation were instead registered with fluconazole, itraconazole, gestodene, and levonorgestrel. This observation put in evidence the importance to take into account both genetic polymorphism and drug-drug interaction to select the most appropriate marker(s) of use in doping analysis.


Assuntos
Metaboloma , Microssomos Hepáticos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Pirrolidinas/metabolismo , Tiofenos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Humanos , Masculino , Polimorfismo Genético , Pirrolidinas/urina , Espectrometria de Massas em Tandem/métodos , Tiofenos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA