Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 129(8): 084711, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19044845

RESUMO

X-ray emission spectroscopy (XES) at the O Kalpha threshold has been used to investigate the electronic structure of a microporous pure calcined zeolite with the crystal structure of the MFI-type framework (silicalite), a deboronated MFI zeolite (DB-MFI), a pure mesoporous cubic MCM-48 material, a MCM-48 loaded with copper and zinc oxide nanoparticles (CuZnO-MCM-48), and a crystalline layered silicic acid H-RUB-18. For comparison, the XES O Kalpha spectrum of pure alpha-quartz has also been recorded. In the nonresonant energy regime the XES O Kalpha spectra for all these compounds look very similar indicating that the electronic structure of the micro- and mesoporous silica materials is very similar to that of quartz. In the resonant regime, however, the spectra exhibit significant differences. In all the materials under study, the resonant XES O Kalpha spectra recorded at photon energies close to the positions of the O K edges show Raman-type inelastic peaks with an energy loss of 11 eV, originating from electronic excitations within these insulating materials. The prominent features in the XES O Kalpha spectra of alpha-quartz and H-RUB-18 are analyzed by means of quantum chemical ab initio cluster calculations.

2.
Langmuir ; 24(11): 5726-33, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18459749

RESUMO

The formation of self-assembled monolayers of benzylmercaptan (BM) and p-cyanobenzylmercaptan (pCBM) on Au(111) surfaces is investigated by a combination of X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and scanning tunneling microscopy (STM). The NEXAFS results of pCBM are supported by ab initio calculations. It is found that BM as well as pCBM form well-ordered monolayers with the molecules oriented almost perpendicular to the surface. BM forms a ( radical 3 x radical 3)R30 degrees structure whereas pCBM forms a slightly different c(7 x 7) hexagonal structure. No phase separation is detected for the adsorption of a 1:1 mixture of the two molecules. The implications of the results for the covalent attachment of transition-metal complexes to thiol-functionalized surfaces are discussed.

3.
Phys Rev Lett ; 95(21): 215301, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16384151

RESUMO

We have measured the high-resolution infrared spectrum of the radical NO in the (2)Pi(1/2) state in superfluid helium nanodroplets. The features are attributed to the -doubling splitting and the hyperfine structure. The hyperfine interaction is found to be unaffected by the He solvation. For the Lambda-doubling splitting, we find a considerable increase by 55% compared to the gas phase. This is explained by a confinement of the electronically excited NO states by the surrounding He. The rotational level spacing is decreased to 76% of the gas phase value. The IR transition to the J=1.5 state is found to be homogeneously broadened. We attribute both observations to the coupling between the molecular rotation and phonon/roton excitations in superfluid (4)He droplets.

4.
Phys Rev Lett ; 90(10): 106102, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12689012

RESUMO

The determination of the structure of inhomogeneous metal-oxide surfaces represents a formidable task. With the present study, we demonstrate that using the binding energy of a probe molecule, CO, is a reliable tool to validate structural models for such complex surfaces. Combining several types of first-principles calculations with advanced molecular beam methods, we are able to provide conclusive evidence that the polar O-terminated surface of ZnO is either reconstructed or hydrogen covered. This finding has important consequences for the ongoing discussion regarding the stabilization mechanism of the electrostatically unstable ("Tasker type 3") polar ZnO surfaces.

5.
Phys Rev Lett ; 87(7): 077601, 2001 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-11497915

RESUMO

Having performed the first three-dimensional ab initio quantum dynamical study of photodesorption from solid surfaces, we gained mechanistic understanding of the rotational alignment observed in the CO/Cr(2)O(3)(0001) system. Our study is based on potential energy surfaces obtained by embedded cluster calculations for both the electronic ground and excited state of the adsorbate substrate complex. Stochastic wave packet calculations demonstrate the importance of the angular degrees of freedom for the microscopic picture of the desorption process in addition to the desorption coordinate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA