Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792366

RESUMO

Long-read sequencing has revolutionized genome assembly, yielding highly contiguous, chromosome-level contigs. However, assemblies from some third generation long read technologies, such as Pacific Biosciences (PacBio) continuous long reads (CLR), have a high error rate. Such errors can be corrected with short reads through a process called polishing. Although best practices for polishing non-model de novo genome assemblies were recently described by the Vertebrate Genome Project (VGP) Assembly community, there is a need for a publicly available, reproducible workflow that can be easily implemented and run on a conventional high performance computing environment. Here, we describe polishCLR (https://github.com/isugifNF/polishCLR), a reproducible Nextflow workflow that implements best practices for polishing assemblies made from CLR data. PolishCLR can be initiated from several input options that extend best practices to suboptimal cases. It also provides re-entry points throughout several key processes, including identifying duplicate haplotypes in purge_dups, allowing a break for scaffolding if data are available, and throughout multiple rounds of polishing and evaluation with Arrow and FreeBayes. PolishCLR is containerized and publicly available for the greater assembly community as a tool to complete assemblies from existing, error-prone long-read data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Fluxo de Trabalho , Haplótipos
2.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36790801

RESUMO

The pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), is a major global pest of cotton. Current management practices include chemical insecticides, cultural strategies, sterile insect releases, and transgenic cotton producing crystalline (Cry) protein toxins of the bacterium Bacillus thuringiensis (Bt). These strategies have contributed to the eradication of P. gossypiella from the cotton-growing areas of the United States and northern Mexico. However, this pest has evolved resistance to Bt cotton in Asia, where it remains a critical pest, and the benefits of using transgenic Bt crops have been lost. A complete annotated reference genome is needed to improve global Bt resistance management of the pink bollworm. We generated the first chromosome-level genome assembly for pink bollworm from a Bt-susceptible laboratory strain (APHIS-S) using PacBio continuous long reads for contig generation, Illumina Hi-C for scaffolding, and Illumina whole-genome re-sequencing for error correction. The pseudo-haploid assembly consists of 29 autosomes and the Z sex chromosome. The assembly exceeds the minimum Earth BioGenome Project quality standards, has a low error rate, is highly contiguous at both the contig and scaffold levels (L/N50 of 18/8.26 MB and 14/16.44 MB, respectively), and is complete, with 98.6% of lepidopteran single-copy orthologs represented without duplication. The genome was annotated with 50% repeat content and 14,107 protein-coding genes, further assigned to 41,666 functional annotations. This assembly represents the first publicly available complete annotated genome of pink bollworm and will serve as the foundation for advancing molecular genetics of this important pest species.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Resistência a Inseticidas/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/genética , Mariposas/genética , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Cromossomos/metabolismo , Gossypium/genética , Gossypium/metabolismo
3.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36454104

RESUMO

The boll weevil, Anthonomus grandis grandis Boheman, is one of the most historically impactful insects due to its near destruction of the US cotton industry in the early 20th century. Contemporary efforts to manage this insect primarily use pheromone baited traps for detection and organophosphate insecticides for control, but this strategy is not sustainable due to financial and environmental costs. We present a high-quality boll weevil genome assembly, consisting of 306 scaffolds with approximately 24,000 annotated genes, as a first step in the identification of gene targets for novel pest control. Gene content and transposable element distribution are similar to those found in other Curculionidae genomes; however, this is the most contiguous and only assembly reported to date for a member in the species-rich genus Anthonomus. Transcriptome profiles across larval, pupal, and adult life stages led to identification of several genes and gene families that could present targets for novel control strategies.


Assuntos
Besouros , Inseticidas , Gorgulhos , Animais , Gorgulhos/genética , Besouros/genética , Larva , Biologia , Gossypium
4.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35959935

RESUMO

Helicoverpa zea (Lepidoptera: Noctuidae) is an insect pest of major cultivated crops in North and South America. The species has adapted to different host plants and developed resistance to several insecticidal agents, including Bacillus thuringiensis (Bt) insecticidal proteins in transgenic cotton and maize. Helicoverpa zea populations persist year-round in tropical and subtropical regions, but seasonal migrations into temperate zones increase the geographic range of associated crop damage. To better understand the genetic basis of these physiological and ecological characteristics, we generated a high-quality chromosome-level assembly for a single H. zea male from Bt-resistant strain, HzStark_Cry1AcR. Hi-C data were used to scaffold an initial 375.2 Mb contig assembly into 30 autosomes and the Z sex chromosome (scaffold N50 = 12.8 Mb and L50 = 14). The scaffolded assembly was error-corrected with a novel pipeline, polishCLR. The mitochondrial genome was assembled through an improved pipeline and annotated. Assessment of this genome assembly indicated 98.8% of the Lepidopteran Benchmark Universal Single-Copy Ortholog set were complete (98.5% as complete single copy). Repetitive elements comprised approximately 29.5% of the assembly with the plurality (11.2%) classified as retroelements. This chromosome-scale reference assembly for H. zea, ilHelZeax1.1, will facilitate future research to evaluate and enhance sustainable crop production practices.


Assuntos
Bacillus thuringiensis , Inseticidas , Lepidópteros , Mariposas , Animais , Inseticidas/farmacologia , Bacillus thuringiensis/genética , Zea mays , Cromossomos Sexuais , Proteínas de Bactérias/genética , Plantas Geneticamente Modificadas , Proteínas Hemolisinas/genética , Mariposas/genética , Controle Biológico de Vetores , Larva
5.
Evol Appl ; 15(12): 2089-2099, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540644

RESUMO

Evolutionary theory predicts that the process of range expansion will lead to differences in life-history and dispersal traits between the core and edge of a population. At the edge, selection and genetic drift can have opposing effects on reproductive ability, while spatial sorting by dispersal ability can increase dispersal. However, the context that individuals experience, including population density and mating status, also impacts dispersal behavior. We seek to understand the shifts in traits of populations expanding across natural, heterogenous environments, and the evolutionary and behavioral factors that may drive those shifts. We evaluated theoretical predictions for evolution of reproductive life-history and dispersal traits using the range expansion of a biological control agent, Diorhabda carinulata, or northern tamarisk beetle. We find that individuals from the edge had increased fecundity and female body mass, and reduced age at first reproduction, indicating that genetic load is low and suggesting that selection has acted at the edge. We also find that density of conspecifics during rearing and mating status influence dispersal of males and that dispersal increases at the edge of the range under certain conditions, particularly when males were unmated and reared at low density. The restricted conditions in which dispersal has increased suggest that spatial sorting has exerted weak effects relative to other potential processes. Our results support most theoretical predictions about evolution during range expansion, even across a heterogeneous environment, especially when the ecological context is considered.

6.
Mol Ecol ; 31(19): 4901-4918, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880414

RESUMO

Madagascar's Central Highlands are largely composed of grasslands, interspersed with patches of forest. The historical perspective was that Madagascar's grasslands had anthropogenic origins, but emerging evidence suggests that grasslands were a component of the pre-human Central Highlands vegetation. Consequently, there is now vigorous debate regarding the extent to which these grasslands have expanded due to anthropogenic pressures. Here, we shed light on the temporal dynamics of Madagascar's vegetative composition by conducting a population genomic investigation of Goodman's mouse lemur (Microcebus lehilahytsara; Cheirogaleidae). These small-bodied primates occur both in Madagascar's eastern rainforests and in the Central Highlands, making them a valuable indicator species. Population divergences among forest-dwelling mammals will reflect changes to their habitat, including fragmentation, whereas patterns of post-divergence gene flow can reveal formerly wooded migration corridors. To explore these patterns, we used RADseq data to infer population genetic structure, demographic models of post-divergence gene flow, and population size change through time. The results offer evidence that open habitats are an ancient component of the Central Highlands, and that widespread forest fragmentation occurred naturally during a period of decreased precipitation near the last glacial maximum. Models of gene flow suggest that migration across the Central Highlands has been possible from the Pleistocene through the recent Holocene via riparian corridors. Though our findings support the hypothesis that Central Highland grasslands predate human arrival, we also find evidence for human-mediated population declines. This highlights the extent to which species imminently threatened by human-mediated deforestation may already be vulnerable from paleoclimatic conditions.


Assuntos
Cheirogaleidae , Lemur , Animais , Cheirogaleidae/genética , Humanos , Madagáscar , Metagenômica , Floresta Úmida
7.
Evol Appl ; 15(1): 60-77, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126648

RESUMO

With the global rise of human-mediated translocations and invasions, it is critical to understand the genomic consequences of hybridization and mechanisms of range expansion. Conventional wisdom is that high genetic drift and loss of genetic diversity due to repeated founder effects will constrain introduced species. However, reduced genetic variation can be countered by behavioral aspects and admixture with other distinct populations. As planned invasions, classical biological control (biocontrol) agents present important opportunities to understand the mechanisms of establishment and spread in a novel environment. The ability of biocontrol agents to spread and adapt, and their effects on local ecosystems, depends on genomic variation and the consequences of admixture in novel environments. Here, we use a biocontrol system to examine the genome-wide outcomes of introduction, spread, and hybridization in four cryptic species of a biocontrol agent, the tamarisk beetle (Diorhabda carinata, D. carinulata, D. elongata, and D. sublineata), introduced from six localities across Eurasia to control the invasive shrub tamarisk (Tamarix spp.) in western North America. We assembled a de novo draft reference genome and applied RADseq to over 500 individuals across laboratory cultures, the native ranges, and the introduced range. Despite evidence of a substantial genetic bottleneck among D. carinulata in N. America, populations continue to establish and spread, possibly due to aggregation behavior. We found that D. carinata, D. elongata, and D. sublineata hybridize in the field to varying extents, with D. carinata × D. sublineata hybrids being the most abundant. Genetic diversity was greater at sites with hybrids, highlighting potential for increased ability to adapt and expand. Our results demonstrate the complex patterns of genomic variation that can result from introduction of multiple ecotypes or species for biocontrol, and the importance of understanding them to predict and manage the effects of biocontrol agents in novel ecosystems.

8.
Proc Biol Sci ; 288(1951): 20210577, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034517

RESUMO

Tasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. Here, we compared signatures of selection across temporal scales to determine whether genes or gene pathways under contemporary selection (six to eight generations) have also been subject to historical selection (65-85 Myr). First, we used targeted sequencing, RAD-capture, in approximately 2500 devils in six populations to identify genomic regions subject to rapid evolution. We documented genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. Then we used a molecular evolution approach to identify historical positive selection in devils compared to other marsupials and found evidence of selection in 1773 genes. However, we found limited overlap across time scales, with only 16 shared candidate genes, and no overlap in enriched functional gene sets. Our results are consistent with a novel, multi-locus evolutionary response of devils to DFTD. Our results can inform conservation by identifying high priority targets for genetic monitoring and guiding maintenance of adaptive potential in managed populations.


Assuntos
Neoplasias Faciais , Marsupiais , Neoplasias , Animais , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Genômica , Marsupiais/genética , Neoplasias/genética , Neoplasias/veterinária
9.
Syst Biol ; 70(2): 203-218, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32642760

RESUMO

Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].


Assuntos
Cheirogaleidae , Especiação Genética , Animais , Cheirogaleidae/classificação , Cheirogaleidae/genética , DNA Mitocondrial/genética , Ecossistema , Fósseis , Filogenia
10.
Mol Ecol ; 29(17): 3217-3233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682353

RESUMO

Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad-scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.


Assuntos
Neoplasias Faciais , Marsupiais , Animais , Animais Selvagens , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Estruturas Genéticas , Marsupiais/genética
11.
Genetics ; 215(4): 1143-1152, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554701

RESUMO

Spontaneous tumor regression has been documented in a small proportion of human cancer patients, but the specific mechanisms underlying tumor regression without treatment are not well understood. Tasmanian devils are threatened with extinction from a transmissible cancer due to universal susceptibility and a near 100% case fatality rate. In over 10,000 cases, <20 instances of natural tumor regression have been detected. Previous work in this system has focused on Tasmanian devil genetic variation associated with the regression phenotype. Here, we used comparative and functional genomics to identify tumor genetic variation associated with tumor regression. We show that a single point mutation in the 5' untranslated region of the putative tumor suppressor RASL11A significantly contributes to tumor regression. RASL11A was expressed in regressed tumors but silenced in wild-type, nonregressed tumors, consistent with RASL11A downregulation in human cancers. Induced RASL11A expression significantly reduced tumor cell proliferation in vitro The RAS pathway is frequently altered in human cancers, and RASL11A activation may provide a therapeutic treatment option for Tasmanian devils as well as a general mechanism for tumor inhibition.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Marsupiais/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Regressão Neoplásica Espontânea , Neoplasias/veterinária , Animais , Feminino , Proteínas Monoméricas de Ligação ao GTP/genética , Neoplasias/genética , Neoplasias/patologia , Células Tumorais Cultivadas
12.
Evolution ; 74(7): 1392-1408, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32445281

RESUMO

Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.


Assuntos
Interação Gene-Ambiente , Interações Hospedeiro-Patógeno/genética , Marsupiais/genética , Seleção Genética , Adaptação Biológica , Animais , Variação Genética
13.
Mol Biol Evol ; 36(12): 2906-2921, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424552

RESUMO

Reconstructing species' demographic histories is a central focus of molecular ecology and evolution. Recently, an expanding suite of methods leveraging either the sequentially Markovian coalescent (SMC) or the site-frequency spectrum has been developed to reconstruct population size histories from genomic sequence data. However, few studies have investigated the robustness of these methods to genome assemblies of varying quality. In this study, we first present an improved genome assembly for the Tasmanian devil using the Chicago library method. Compared with the original reference genome, our new assembly reduces the number of scaffolds (from 35,975 to 10,010) and increases the scaffold N90 (from 0.101 to 2.164 Mb). Second, we assess the performance of four contemporary genomic methods for inferring population size history (PSMC, MSMC, SMC++, Stairway Plot), using the two devil genome assemblies as well as simulated, artificially fragmented genomes that approximate the hypothesized demographic history of Tasmanian devils. We demonstrate that each method is robust to assembly quality, producing similar estimates of Ne when simulated genomes were fragmented into up to 5,000 scaffolds. Overall, methods reliant on the SMC are most reliable between ∼300 generations before present (gbp) and 100 kgbp, whereas methods exclusively reliant on the site-frequency spectrum are most reliable between the present and 30 gbp. Our results suggest that when used in concert, genomic methods for reconstructing species' effective population size histories 1) can be applied to nonmodel organisms without highly contiguous reference genomes, and 2) are capable of detecting independently documented effects of historical geological events.


Assuntos
Demografia/métodos , Genoma , Genômica/métodos , Genômica/normas , Marsupiais/genética , Animais , Feminino
14.
Mol Ecol ; 27(21): 4189-4199, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30171778

RESUMO

Identifying the genetic architecture of complex phenotypes is a central goal of modern biology, particularly for disease-related traits. Genome-wide association methods are a classical approach for identifying the genomic basis of variation in disease phenotypes, but such analyses are particularly challenging in natural populations due to sample size difficulties. Extensive mark-recapture data, strong linkage disequilibrium and a lethal transmissible cancer make the Tasmanian devil (Sarcophilus harrisii) an ideal model for such an association study. We used a RAD-capture approach to genotype 624 devils at ~16,000 loci and then used association analyses to assess the heritability of three cancer-related phenotypes: infection case-control (where cases were infected devils and controls were devils that were never infected), age of first infection and survival following infection. The SNP array explained much of the phenotypic variance for female survival (>80%) and female case-control (>61%). We found that a few large-effect SNPs explained much of the variance for female survival (~5 SNPs explained >61% of the total variance), whereas more SNPs (~56) of smaller effect explained less of the variance for female case-control (~23% of the total variance). By contrast, these same SNPs did not account for a significant proportion of phenotypic variance in males, suggesting that the genetic bases of these traits and/or selection differ across sexes. Loci involved with cell adhesion and cell-cycle regulation underlay trait variation, suggesting that the devil immune system is rapidly evolving to recognize and potentially suppress cancer growth through these pathways. Overall, our study provided necessary data for genomics-based conservation and management in Tasmanian devils.


Assuntos
Resistência à Doença/genética , Marsupiais/genética , Neoplasias/veterinária , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Feminino , Estudos de Associação Genética/veterinária , Genômica , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Taxa de Sobrevida , Tasmânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA