Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Immunol ; 70: 101819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632991

RESUMO

The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.


Assuntos
Sistema Nervoso Entérico , Enteropatias , Humanos , Neuroimunomodulação , Homeostase
2.
Mucosal Immunol ; 15(6): 1296-1308, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36071145

RESUMO

Monocyte-derived macrophages (Mφs) are crucial regulators during muscularis inflammation. However, it is unclear which micro-environmental factors are responsible for monocyte recruitment and anti-inflammatory Mφ differentiation in this paradigm. Here, we investigate Mφ heterogeneity at different stages of muscularis inflammation and determine how environmental cues can attract and activate tissue-protective Mφs. Results showed that muscularis inflammation induced marked alterations in mononuclear phagocyte populations associated with a rapid infiltration of Ly6c+ monocytes that locally acquired unique transcriptional states. Trajectory inference analysis revealed two main pro-resolving Mφ subpopulations during the resolution of muscularis inflammation, i.e. Cd206+ MhcIIhi and Timp2+ MhcIIlo Mφs. Interestingly, we found that damage to the micro-environment upon muscularis inflammation resulted in EGC activation, which in turn stimulated monocyte infiltration and the consequent differentiation in anti-inflammatory CD206+ Mφs via CCL2 and CSF1, respectively. In addition, CSF1-CSF1R signaling was shown to be essential for the differentiation of monocytes into CD206+ Mφs and EGC proliferation during muscularis inflammation. Our study provides a comprehensive insight into pro-resolving Mφ differentiation and their regulators during muscularis inflammation. We deepened our understanding in the interaction between EGCs and Mφs, thereby highlighting pro-resolving Mφ differentiation as a potential novel therapeutic strategy for the treatment of intestinal inflammation.


Assuntos
Macrófagos , Monócitos , Humanos , Inflamação , Neuroglia , Anti-Inflamatórios
3.
Front Med (Lausanne) ; 8: 694268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307422

RESUMO

Background: We previously showed increased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vagotomized mice. Here, we evaluated whether vagus nerve stimulation (VNS) is able to reduce the severity of DSS colitis and aimed to unravel the mechanism involved. Methods: Colitis was induced in wild type mice by 2.5% DSS administration in drinking water for 5 days. VNS (5 Hz, 1 ms, 1 mA) was applied 1 day prior to and after 4 days of DSS administration to evaluate changes in epithelial integrity and inflammatory response, respectively. Epithelial integrity was assessed using TUNEL and Ki67 staining. Monocytes, immature and mature macrophages were sorted from colonic samples and gene expression levels of pro-inflammatory cytokines were studied. Results: VNS applied prior to DSS administration (i.e., prophylactic VNS) reduced disease activity index (VNS 0.8 ± 0.6 vs. sham 2.8 ± 0.7, p < 0.001, n = 5) and tended to improve histology score. Prophylactic VNS significantly increased epithelial cell proliferation and diminished apoptosis compared to sham stimulation. VNS applied at day 4 during DSS administration (i.e., therapeutic VNS) decreased the influx of monocytes, monocyte-derived macrophages and neutrophils, and significantly reduced pro-inflammatory cytokine expression (i.e., Tnfα and Cxcl1) in immature macrophages compared to sham stimulation. Conclusions: A single period of VNS applied prior to DSS exposure reduced DSS-induced colitis by an improvement in epithelial integrity. On the other hand, VNS applied during the inflammatory phase of DSS colitis reduced cytokine expression in immature macrophages. Our data further underscores the potential of VNS as novel therapeutic approach for inflammatory bowel diseases.

4.
Gut ; 70(12): 2249-2260, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33558271

RESUMO

OBJECTIVE: Dysfunctional resolution of intestinal inflammation and altered mucosal healing are essential features in the pathogenesis of inflammatory bowel disease (IBD). Intestinal macrophages are vital in the process of inflammation resolution, but the mechanisms underlying their mucosal healing capacity remain elusive. DESIGN: We investigated the role of the prostaglandin E2 (PGE2) receptor PTGER4 on the differentiation of intestinal macrophages in patients with IBD and mouse models of intestinal inflammation. We studied mucosal healing and intestinal epithelial barrier regeneration in Csf1r-iCre Ptger4fl/fl mice during dextran sulfate sodium (DSS)-induced colitis. The effect of PTGER4+ macrophage secreted molecules was investigated on epithelial organoid differentiation. RESULTS: Here, we describe a subset of PTGER4-expressing intestinal macrophages with mucosal healing properties both in humans and mice. Csf1r-iCre Ptger4fl/fl mice showed defective mucosal healing and epithelial barrier regeneration in a model of DSS colitis. Mechanistically, an increased mucosal level of PGE2 triggers chemokine (C-X-C motif) ligand 1 (CXCL1) secretion in monocyte-derived PTGER4+ macrophages via mitogen-activated protein kinases (MAPKs). CXCL1 drives epithelial cell differentiation and proliferation from regenerating crypts during colitis. Specific therapeutic targeting of macrophages with liposomes loaded with an MAPK agonist augmented the production of CXCL1 in vivo in conditional macrophage PTGER4-deficient mice, restoring their defective epithelial regeneration and favouring mucosal healing. CONCLUSION: PTGER4+ intestinal macrophages are essential for supporting the intestinal stem cell niche and regeneration of the injured epithelium. Our results pave the way for the development of a new class of therapeutic targets to promote macrophage healing functions and favour remission in patients with IBD.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Ativação de Macrófagos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Diferenciação Celular , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Camundongos , Regeneração , Transdução de Sinais
5.
J Crohns Colitis ; 14(12): 1748-1758, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32556102

RESUMO

BACKGROUND AND AIMS: Ulcerative colitis [UC] is associated with excessive neutrophil infiltration and collateral tissue damage, but the link is not yet completely understood. Since c-MET receptor tyrosine kinase [MET] is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor [HGF], we aimed to identify the function of HGF-MET signalling in neutrophils in UC patients and in mice during intestinal inflammation. METHODS: Serum and colonic biopsies from healthy controls and UC patients with active [Mayo endoscopic subscore 2-3] and inactive [Mayo endoscopic subscore 0-1] disease were collected to assess the level of serum and colonic HGF. Disease progression and immune cell infiltration were assessed during dextran sodium sulphate [DSS] colitis in wild-type and MRP8-Cre MET-LoxP mice. RESULTS: Increased mucosal HGF expression was detected in patients with active UC, and in mice during the inflammatory phase of DSS colitis. Similarly, serum HGF was significantly increased in active UC patients and positively correlated with C-reactive protein and blood neutrophil counts. Flow cytometric analysis also demonstrated an upregulation of colonic MET+ neutrophils during DSS colitis. Genetic ablation of MET in neutrophils reduced the severity of DSS-induced colitis. Concomitantly, there was a decreased number of TH17 cells, which could be due to a decreased production of IL-1ß by MET-deficient neutrophils. CONCLUSIONS: These data highlight the central role of neutrophilic HGF-MET signalling in exacerbating damage during intestinal inflammation. Hence, selective blockade of this pathway in neutrophils could be considered as a novel therapeutic approach in UC.


Assuntos
Colite Ulcerativa/genética , Fator de Crescimento de Hepatócito/farmacologia , Proteínas Proto-Oncogênicas c-met/farmacologia , Transdução de Sinais/fisiologia , Exacerbação dos Sintomas , Animais , Bélgica , Colite Ulcerativa/fisiopatologia , Colo/metabolismo , Colo/patologia , Colo/fisiopatologia , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Citometria de Fluxo/estatística & dados numéricos , Fator de Crescimento de Hepatócito/genética , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/imunologia
6.
Nat Rev Gastroenterol Hepatol ; 16(9): 531-543, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31312042

RESUMO

Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte-macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.


Assuntos
Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Macrófagos/imunologia , Homeostase/imunologia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia
7.
Gut ; 68(8): 1406-1416, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30472681

RESUMO

OBJECTIVES: Vagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human. DESIGN: Using Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1-5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI. RESULTS: EFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery. CONCLUSION: Enteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI. TRIAL REGISTRATION NUMBER: NCT02425774.


Assuntos
Benzofuranos , Íleus , Intestino Delgado , Músculo Liso , Pancreaticoduodenectomia/efeitos adversos , Complicações Pós-Operatórias , Adulto , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacologia , Modelos Animais de Doenças , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Humanos , Íleus/etiologia , Íleus/imunologia , Íleus/fisiopatologia , Íleus/prevenção & controle , Inflamação/imunologia , Inflamação/prevenção & controle , Intestino Delgado/imunologia , Intestino Delgado/inervação , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Pancreaticoduodenectomia/métodos , Projetos Piloto , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/prevenção & controle , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Resultado do Tratamento , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
8.
J Immunol ; 201(1): 215-229, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760193

RESUMO

Atypical chemokine receptors (ACKRs) are expressed by discrete populations of stromal cells at specific anatomical locations where they control leukocyte migration by scavenging or transporting chemokines. ACKR4 is an atypical receptor for CCL19, CCL21, and CCL25. In skin, ACKR4 plays indispensable roles in regulating CCR7-dependent APC migration, and there is a paucity of migratory APCs in the skin-draining lymph nodes of Ackr4-deficient mice under steady-state and inflammatory conditions. This is caused by loss of ACKR4-mediated CCL19/21 scavenging by keratinocytes and lymphatic endothelial cells. In contrast, we show in this study that Ackr4 deficiency does not affect dendritic cell abundance in the small intestine and mesenteric lymph nodes, at steady state or after R848-induced mobilization. Moreover, Ackr4 expression is largely restricted to mesenchymal cells in the intestine, where it identifies a previously uncharacterized population of fibroblasts residing exclusively in the submucosa. Compared with related Ackr4- mesenchymal cells, these Ackr4+ fibroblasts have elevated expression of genes encoding endothelial cell regulators and lie in close proximity to submucosal blood and lymphatic vessels. We also provide evidence that Ackr4+ fibroblasts form physical interactions with lymphatic endothelial cells, and engage in molecular interactions with these cells via the VEGFD/VEGFR3 and CCL21/ACKR4 pathways. Thus, intestinal submucosal fibroblasts in mice are a distinct population of intestinal mesenchymal cells that can be identified by their expression of Ackr4 and have transcriptional and anatomical properties that strongly suggest roles in endothelial cell regulation.


Assuntos
Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Receptores CCR/metabolismo , Animais , Movimento Celular/fisiologia , Quimiocina CCL21/metabolismo , Colite/induzido quimicamente , Colite/patologia , Células Dendríticas/citologia , Sulfato de Dextrana/toxicidade , Feminino , Mucosa Intestinal/citologia , Leucócitos/fisiologia , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Gut ; 66(12): 2098-2109, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28615302

RESUMO

OBJECTIVE: Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility. DESIGN: IM was performed in mice with defective monocyte migration to tissues (C-C motif chemokine receptor 2, Ccr2-/ - mice) and wild-type (WT) mice to study the role of monocytes and monocyte-derived macrophages (MΦs) during onset and resolution of ME inflammation. RESULTS: At early time points, IM-induced GI transit delay and inflammation were equal in WT and Ccr2 -/- mice. However, GI transit recovery after IM was significantly delayed in Ccr2 -/- mice compared with WT mice, associated with increased neutrophil-mediated immunopathology and persistent impaired neuromuscular function. During recovery, monocyte-derived MΦs acquire pro-resolving features that aided in the resolution of inflammation. In line, bone marrow reconstitution and treatment with MΦ colony-stimulating factor 1 enhanced monocyte recruitment and MΦ differentiation and ameliorated GI transit in Ccr2 -/- mice. CONCLUSION: Our study reveals a critical role for monocyte-derived MΦs in restoring intestinal homeostasis after surgical trauma. From a therapeutic point of view, our data indicate that inappropriate targeting of monocytes may increase neutrophil-mediated immunopathology and prolong the clinical outcome of POI, while future therapies should be aimed at enhancing MΦ physiological repair functions.


Assuntos
Íleus/imunologia , Íleus/patologia , Macrófagos/imunologia , Monócitos/imunologia , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/patologia , Receptores CCR2/imunologia , Animais , Diferenciação Celular , Movimento Celular , Modelos Animais de Doenças , Motilidade Gastrointestinal , Trânsito Gastrointestinal , Homeostase/imunologia , Inflamação/imunologia , Inflamação/patologia , Camundongos , Músculo Liso/patologia
10.
J Physiol ; 594(20): 5771-5780, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26959627

RESUMO

The main task of the immune system is to distinguish and respond accordingly to 'danger' or 'non-danger' signals. This is of critical importance in the gastrointestinal tract in which immune cells are constantly in contact with food antigens, symbiotic microflora and potential pathogens. This complex mixture of food antigens and symbionts are essential for providing vital nutrients, so they must be tolerated by the intestinal immune system to prevent aberrant inflammation. Therefore, in the gut the balance between immune activation and tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent hypersensitivity to harmless luminal antigens. Loss of this delicate equilibrium can lead to abnormal activation of the intestinal immune system resulting in devastating gastrointestinal disorders such as inflammatory bowel disease (IBD). Recent evidence supports the idea that the central nervous system interacts dynamically via the vagus nerve with the intestinal immune system to modulate inflammation through humoral and neural pathways, using a mechanism also referred to as the intestinal cholinergic anti-inflammatory pathway. In this review, we will focus on the current understanding of the mechanisms and neuronal circuits involved in the intestinal cholinergic anti-inflammatory pathway. Further investigation on the crosstalk between the nervous and intestinal immune system will hopefully provide new insights leading to the identification of innovative therapeutic approaches to treat intestinal inflammatory diseases.


Assuntos
Colinérgicos/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Animais , Sistema Nervoso Central/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Neurônios/imunologia
11.
J Neurochem ; 129(6): 966-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24611815

RESUMO

Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad-spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP-deficient mice, disclosed that both MMP-2 and MT1-MMP, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1-MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP-2 and ß1-integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules. Axonal regeneration in the central nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from mouse retinal explants. Our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules and show a possible link between MMP-2 and ß1-integrin in axon outgrowth.


Assuntos
Axônios/fisiologia , Metaloproteinase 2 da Matriz/fisiologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz Associadas à Membrana/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Axônios/efeitos dos fármacos , Gelatinases/farmacologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Integrina beta1/farmacologia , Integrina beta1/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/enzimologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA