Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 11(9): e12268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36149031

RESUMO

Extracellular vesicle-bound DNA (evDNA) is an understudied extracellular vesicle (EV) cargo, particularly in cancer-unrelated research. Although evDNA has been detected in urine, little is known about its characteristics, localization, and biomarker potential for kidney pathologies. To address this, we enriched EVs from urine of well-characterized kidney transplant recipients undergoing allograft biopsy, characterized their evDNA and its association to allograft injury. The SEC-based method enriched pure EVs from urine of kidney transplant recipients, regardless of the allograft injury. Urinary evDNA represented up to 29.2 ± 8% (mean ± SD) of cell-free DNA (cfDNA) and correlated with cfDNA in several characteristics but was less fragmented (P < 0.001). Importantly, using DNase treatment and immunogold labelling TEM, we demonstrated that evDNA was bound to the surface of urinary EVs. Normalised evDNA yield (P = 0.042) and evDNA copy number (P = 0.027) significantly differed between patients with normal histology, rejection injury and non-rejection injury, the later groups having significantly larger uEVs (mean diameter, P = 0.045) and more DNA bound per uEV. ddDNA is detectable in uEV samples of kidney allograft recipients, but its quantity is highly variable. In a proof-of-principle study, several evDNA characteristics correlated with clinical and histological parameters (P = 0.040), supporting that the potential of evDNA as a biomarker for kidney allograft injury should be further investigated.


Assuntos
Ácidos Nucleicos Livres , Vesículas Extracelulares , Aloenxertos , Biomarcadores/urina , Ácidos Nucleicos Livres/genética , DNA , Desoxirribonucleases , Humanos , Rim/patologia
2.
Front Med (Lausanne) ; 8: 748668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692738

RESUMO

Increasing research demonstrates the potential of donor-derived cell-free DNA (dd-cfDNA) as a biomarker for monitoring the health of various solid organ transplants. Several methods have been proposed for cfDNA analysis, including real-time PCR, digital PCR, and next generation sequencing-based approaches. We sought to revise the droplet digital PCR (ddPCR)-based approach to quantify relative dd-cfDNA in plasma from kidney transplant (KTx) patients using a novel pilot set of assays targeting single nucleotide polymorphisms that have a very high potential to distinguish cfDNA from two individuals. The assays are capable of accurate quantification of down to 0.1% minor allele content when analyzing 165 ng of human DNA. We found no significant differences in the yield of extracted cfDNA using the three different commercial kits tested. More cfDNA was extracted from the plasma of KTx patients than from healthy volunteers, especially early after transplantation. The median level of donor-derived minor alleles in KTx samples was 0.35%. We found that ddPCR using the evaluated assays within specific range is suitable for analysis of KTx patients' plasma but recommend prior genotyping of donor DNA and performing reliable preamplification of cfDNA.

3.
J Cell Sci ; 132(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30745340

RESUMO

The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Neurônios Motores/fisiologia , Complexos Multiproteicos/metabolismo , Mutação/genética , RNA Nuclear/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intranuclear , Camundongos , Fator de Processamento Associado a PTB/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nuclear/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos
4.
J Cell Sci ; 128(22): 4151-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26403203

RESUMO

Aberrant cytoplasmic aggregation of FUS, which is caused by mutations primarily in the C-terminal nuclear localisation signal, is associated with 3% of cases of familial amyotrophic lateral sclerosis (ALS). FUS aggregates are also pathognomonic for 10% of all frontotemporal lobar degeneration (FTLD) cases; however, these cases are not associated with mutations in the gene encoding FUS. This suggests that there are differences in the mechanisms that drive inclusion formation of FUS in ALS and FTLD. Here, we show that the C-terminal tyrosine residue at position 526 of FUS is crucial for normal nuclear import. This tyrosine is subjected to phosphorylation, which reduces interaction with transportin 1 and might consequentially affect the transport of FUS into the nucleus. Furthermore, we show that this phosphorylation can occur through the activity of the Src family of kinases. Our study implicates phosphorylation as an additional mechanism by which nuclear transport of FUS might be regulated and potentially perturbed in ALS and FTLD.


Assuntos
Proteína FUS de Ligação a RNA/metabolismo , Tirosina/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Tirosina/genética , beta Carioferinas/metabolismo
5.
Neurobiol Aging ; 36(2): 1091-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25442110

RESUMO

The G4C2 hexanucleotide repeat expansion, located in the first intron of the C9ORF72 gene, represents a major genetic hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several hypotheses have been proposed on how the transcribed repeat RNA leads to the development of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. However, despite their importance, factors affecting the transcription of expanded-repeat RNA are not well known. As transcription is dependent on the DNA containing the expanded repeats, it is crucial to understand its structure. G-quadruplexes are known to affect expression on the level of DNA, therefore whether they form on the expanded-repeat DNA constitutes an important biological question. Using nuclear magnetic resonance and circular dichroism spectroscopy we show that DNA G4C2 with varying number of repeats d(G4C2)n form planar guanine quartets characteristic of G-quadruplexes. Additionally, we show DNA G-quadruplexes can form inter- and intra-molecularly in either parallel or anti-parallel orientation, based on d(G4C2) sequence length. This potential structural heterogeneity of longer disease-relevant repeats should therefore be taken into account when studying their role in disease pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Quadruplex G , Proteínas/genética , Proteína C9orf72 , Dicroísmo Circular , DNA/genética , Humanos , Íntrons/genética , Espectroscopia de Ressonância Magnética , RNA/genética , Transcrição Gênica
6.
Cell Rep ; 5(5): 1178-86, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24290757

RESUMO

The GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Apoptose , Demência Frontotemporal/genética , Repetições de Microssatélites , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72 , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Demência Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Proteínas/genética , Splicing de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ratos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA