Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 16: 1038339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570845

RESUMO

Background: The objective of this pilot study was to identify frequency-dependent effects of respiratory-gated auricular vagus afferent nerve stimulation (RAVANS) on the regulation of blood pressure and heart rate variability in hypertensive subjects and examine potential differential effects by sex/gender or race. Methods: Twenty hypertensive subjects (54.55 ± 6.23 years of age; 12 females and 8 males) were included in a within-person experimental design and underwent five stimulation sessions where they received RAVANS at different frequencies (i.e., 2 Hz, 10 Hz, 25 Hz, 100 Hz, or sham stimulation) in a randomized order. EKG and continuous blood pressure signals were collected during a 10-min baseline, 30-min stimulation, and 10-min post-stimulation periods. Generalized estimating equations (GEE) adjusted for baseline measures were used to evaluate frequency-dependent effects of RAVANS on heart rate, high frequency power, and blood pressure measures, including analyses stratified by sex and race. Results: Administration of RAVANS at 100 Hz had significant overall effects on the reduction of heart rate (ß = -2.03, p = 0.002). It was also associated with a significant reduction of diastolic (ß = -1.90, p = 0.01) and mean arterial blood pressure (ß = -2.23, p = 0.002) in Black hypertensive participants and heart rate in female subjects (ß = -2.83, p = 0.01) during the post-stimulation period when compared to sham. Conclusion: Respiratory-gated auricular vagus afferent nerve stimulation exhibits frequency-dependent rapid effects on the modulation of heart rate and blood pressure in hypertensive patients that may further differ by race and sex. Our findings highlight the need for the development of optimized stimulation protocols that achieve the greatest effects on the modulation of physiological and clinical outcomes in this population.

2.
Anal Chem ; 94(38): 13171-13180, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099239

RESUMO

An electrochemical platform for generating and controlling a localized pH microenvironment on demand is proposed by employing a closed-loop control algorithm based on an iridium oxide pH sensor input. We use a combination of solution-borne quinones and galvanostatic excitation on a prepatterned indium tin oxide (ITO) working electrode to modulate pH within a very well confined, small volume of solution close to the electrode surface. We demonstrate that the rate of pH change can be controlled at up to 2 pH s-1 with an excellent repeatability (±0.004). The desired pH microenvironment can be stably maintained for longer than 2 h within ±0.0012 pH. As a high-impact application of the platform technology, we propose a single-step immunoassay and demonstrate its utility in measuring C-reactive protein (CRP), a critical inflammatory marker in various conditions such as myocardial infarction and even SARS-Cov-2. Utilizing pH modulation technology along with pH-sensitive fluorescence dye simplifies the immunoassay process into a single-step, where a mixture of all of the reagents is incubated only for 1 h without any washing steps or the need to change solution. This simplified immunoassay process minimizes the hands-on time of the end-user and thus decreases technician-driven errors. Moreover, the absence of complicated liquid-handling hardware makes it more suitable and attractive for an ultracompact platform to ultimately be used in a point-of-care diagnostic assay.


Assuntos
Técnicas Biossensoriais , COVID-19 , Proteína C-Reativa , Técnicas Eletroquímicas , Humanos , Concentração de Íons de Hidrogênio , Imunoensaio , Quinonas , SARS-CoV-2
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2581-2584, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018534

RESUMO

The objective of this study was to determine potential effects of Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) on cardiac autonomic activity in hypertensive patients.20 hypertensive subjects (57.3±6.2 years; 11 females, 9 males) were randomized to receive either active RAVANS at 25 Hz or sham stimulation for 5 consecutive days and were assessed 5 and 10 days later. Continuous electrocardiogram, pulse rate, and blood pressure signals were collected during 10-minute baseline, 30-minute stimulation, and 10-minute recovery periods for each session. LabChart was used to acquire and process heart rate variability and blood pressure indices. Percent changes of mean values during the recovery period were calculated comparing the final stimulation session and follow-up sessions to the first stimulation session. General linear models were applied to assess the effects of RAVANS on the variables evaluated, considering baseline values and sex as covariates in the models.We found that RAVANS increased high frequency (HF-HRV) power during recovery of the final stimulation session and both follow-up sessions in comparison to sham. RAVANS also lowered heart rate and increased average RR and root mean square of successive RR interval differences (RMSSD) during recovery on the final day of stimulation. No significant effects on blood pressure values were observed during these periods.These results suggest that RAVANS effectively stimulates cardiovagal activity in hypertension, with effects lasting up to 10 days. Future research incorporating larger sample sizes is needed to replicate the effects of RAVANS.Clinical Relevance- This research has implications for potential therapeutic effects of respiratory-gated tVNS on cardiovagal modulation in hypertensive patients.


Assuntos
Hipertensão , Estimulação do Nervo Vago , Pressão Sanguínea , Feminino , Frequência Cardíaca , Humanos , Hipertensão/terapia , Masculino , Taxa Respiratória
4.
Anal Chem ; 86(21): 10917-24, 2014 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-25279716

RESUMO

Glassy carbon (GC) electrodes are well-known to contain oxygenated functional groups such as phenols, carbonyls, and carboxylic acids on their surface. The effects of these groups on voltammetry in aqueous solution are well-studied, but there has been little discussion of their possible effects in nonaqueous solution. In this study, we show that the acidic functional groups, particularly phenols, are likely causes of anomalous features often seen in the voltammetry of quinones in nonaqueous solution. These features, a too small second cyclic voltammetric wave and extra current between the two waves that sometimes appears to be a small, broad third voltammetric wave, have previously been attributed to different types of dimerization. In this work, concentration-dependent voltammetry in acetonitrile rules out dimerization with a series of alkyl-benzoquinones because the anomalous features get larger as the concentration decreases. At low concentrations, solution bimolecular reactions will be relatively less important than reactions with surface groups. Addition of substoichiometric amounts of naphthol at higher quinone concentrations produces almost identical behavior as seen at low quinone concentrations with no added naphthol. This implicates hydrogen bonding and proton transfer from the surface phenolic groups as the cause of the anomalous features in quinone voltammetry at GC electrodes. This conclusion is supported by the perturbation of surface oxide coverage on GC electrodes through different electrode pretreatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA