Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Microbiol ; 15: 1343988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328419

RESUMO

Introduction: Fungal keratitis (FK) poses a severe threat to vision, potentially leading to blindness if not promptly addressed. Clitoria ternatea flower extracts have a history of use in Ayurvedic and Indian traditional medicines, particularly for treating eye ailments. This study investigates the antifungal and antibiofilm effects of Clitoria ternatea flower extracts on the FK clinical isolate Coniochaeta hoffmannii. Structural details and key compound identification were analysed through FTIR and GC-MS. Methods: The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of Clitoria ternatea flower extracts were determined using broth dilution and well plate techniques. Biofilm inhibitory activity was assessed through microscopic evaluation, while anti-irritant and cytotoxic properties were evaluated using CAE-EI and MTT assays. Through GC-MS and FT-IR analysis the compounds dissolved in the extract and their functional group were studied, and their toxicity screening and pharmacokinetic prediction were conducted in silico. Subsequently, compounds with high corneal permeability were further identified, and molecular docking and simulation studies at 150 ns were used to investigate their interactions with fungal virulence factors and human inflammatory proteins. Results and Discussion: At a concentration of 250 µg/mL, the Clitoria ternatea flower extract displayed effective biofilm inhibition. MIC and MFC values were determined as 500 and 1000 µg/mL, respectively. CAE-EI and MTT assays indicated no significant irritant and cytotoxic effects up to a concentration of 3 mg/mL. Compounds like 9,9-dimethoxybicyclo[3.3.1]nonane-2,4-dione showed high corneal permeability with strong and stable interactions with fungal virulence cellobiose dehydrogenase, endo ß 1,4 xylanase, and glucanase, as well as corneal inflammation-associated human TNF-α and Interleukin IL-1b protein targets. The findings indicate that extracts from C. ternatea flowers could be formulated for an effective and safe alternative for developing new topical FK therapeutics.

2.
3 Biotech ; 14(2): 57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298556

RESUMO

Since Doxil's first clinical approval in 1995, lipid nanoparticles have garnered great interest and shown exceptional therapeutic efficacy. It is clear from the licensure of two RNA treatments and the mRNA-COVID-19 vaccination that lipid nanoparticles have immense potential for delivering nucleic acids. The review begins with a list of lipid nanoparticle types, such as liposomes and solid lipid nanoparticles. Then it moves on to the earliest lipid nanoparticle forms, outlining how lipid is used in a variety of industries and how it is used as a versatile nanocarrier platform. Lipid nanoparticles must then be functionally modified. Various approaches have been proposed for the synthesis of lipid nanoparticles, such as High-Pressure Homogenization (HPH), microemulsion methods, solvent-based emulsification techniques, solvent injection, phase reversal, and membrane contractors. High-pressure homogenization is the most commonly used method. All of the methods listed above follow four basic steps, as depicted in the flowchart below. Out of these four steps, the process of dispersing lipids in an aqueous medium to produce liposomes is the most unpredictable step. A short outline of the characterization of lipid nanoparticles follows discussions of applications for the trapping and transporting of various small molecules. It highlights the use of rapamycin-coated lipid nanoparticles in glioblastoma and how lipid nanoparticles function as a conjugator in the delivery of anticancer-targeting nucleic acids. High biocompatibility, ease of production, scalability, non-toxicity, and tailored distribution are just a meager of the enticing allowances of using lipid nanoparticles as drug delivery vehicles. Due to the present constraints in drug delivery, more research is required to utterly realize the potential of lipid nanoparticles for possible clinical and therapeutic purposes.

3.
Phytomedicine ; 123: 155242, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100922

RESUMO

BACKGROUND: This study employed a meta-analysis to evaluate the efficacy and safety of adjunctive treatment with injectable Lentinan (LNT) in combination with chemotherapy for gastric cancer (GC). METHODS: Computer-based searches of 6 databases were performed to identify randomized controlled trials (RCTs) relevant to the treatment of GC with LNT through mid-March 2023. Two independent researchers performed risk of bias assessment and trial sequential analysis(TSA), extracted the data and used Revman 5.3 software for data analysis. The certainty of evidence was graded based on the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. RESULTS: A total of 31 RCTs with 2729 patients were included in the analysis. The results revealed that adjunctive therapy with LNT was associated with improved treatment efficacy (RR = 1.48, 95%CI: 1.36 ∼ 1.61, p < 0.00001), improvement in clusters of differentiation (CD3+, CD4+, and CD4+/CD8+), natural killer (NK) cells, and quality of life assessment (RR = 1.32, 95%CI: 1.20 ∼ 1.45, p < 0.00001) compared to using chemotherapy alone. In addition, there was a reduction in CD8+ levels, incidence of white blood cell decline, gastrointestinal reactions, and platelet decline. TSA results indicated that there was sufficient evidence to draw firm conclusions about these outcomes, and the GRADE scores showed 'high' or 'moderate' quality of evidence for these outcomes. CONCLUSION: The efficacy of treatment of GC with LNT in combination with chemotherapy was found to be better than chemotherapy alone. And no serious adverse effects were observed. However, further RCTs are needed to further validate the results of this study.


Assuntos
Lentinano , Neoplasias Gástricas , Humanos , Lentinano/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Resultado do Tratamento
4.
Molecules ; 28(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836658

RESUMO

TWIK1 (K2P1.1/KCNK1) belongs to the potassium channels of the two-pore domain. Its current is very small and difficult to measure. In this work, we used a 100 mM NH4+ extracellular solution to increase TWIK1 current in its stable cell line expressed in HEK293. Then, the inhibition of magnolol on TWIK1 was observed via a whole-cell patch clamp experiment, and it was found that magnolol had a significant inhibitory effect on TWIK1 (IC50 = 6.21 ± 0.13 µM). By molecular docking and alanine scanning mutagenesis, the IC50 of TWIK1 mutants G229A, T225A, I140A, L223A, and S224A was 20.77 ± 3.20, 21.81 ± 7.93, 10.22 ± 1.07, 9.55 ± 1.62, and 7.43 ± 3.20 µM, respectively. Thus, we conclude that the inhibition of the TWIK1 channel by magnolol is related to G229 and T225 on the P2- pore helix.


Assuntos
Compostos de Bifenilo , Canais de Potássio , Humanos , Simulação de Acoplamento Molecular , Células HEK293 , Canais de Potássio/metabolismo , Compostos de Bifenilo/farmacologia
5.
Medicine (Baltimore) ; 102(34): e34866, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653800

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS: In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS: Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1ß, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1ß, CXCL8, and p-STAT3. CONCLUSION: Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapas de Interação de Proteínas , Transdução de Sinais , Simulação de Acoplamento Molecular , Células Epiteliais , Células Cultivadas , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas
7.
Medicine (Baltimore) ; 102(29): e33990, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478241

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors with a poor prognosis. The long non-coding RNA (lncRNA) has been found to have great potential as a prognostic biomarker or therapeutic target for cancer patients. However, the prognostic value and tumor immune infiltration of lncRNAs in HCC has yet to be fully elucidated. To identify prognostic biomarkers of lncRNA in HCC by integrated bioinformatics analysis and explore their functions and relationship with tumor immune infiltration. The prognostic risk assessment model for HCC was constructed by comprehensively using univariate/multivariate Cox regression analysis, Kaplan-Meier survival analysis, and the least absolute shrinkage and selection operator regression analysis. Subsequently, the accuracy, independence, and sensitivity of our model were evaluated, and a nomogram for individual prediction in the clinic was constructed. Tumor immune microenvironment (TIME), immune checkpoints, and human leukocyte antigen alleles were compared in high- and low-risk patients. Finally, the functions of our lncRNA signature were examined using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and gene set enrichment analysis. A 6-lncRNA panel of HCC consisting of RHPN1-AS1, LINC01224, CTD-2510F5.4, RP1-228H13.5, LINC01011, and RP11-324I22.4 was eventually identified, and show good performance in predicting the survivals of patients with HCC and distinguishing the immunomodulation of TIME of high- and low-risk patients. Functional analysis also suggested that this 6-lncRNA panel may play an essential role in promoting tumor progression and immune regulation of TIME. In this study, 6 potential lncRNAs were identified as the prognostic biomarkers in HCC, and the regulatory mechanisms involved in HCC were initially explored.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Prognóstico , Neoplasias Hepáticas/genética , Biologia Computacional , Biomarcadores , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
8.
Phytomedicine ; 118: 154984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487253

RESUMO

BACKGROUND: Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS: In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS: When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION: CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Gástricas , Animais , Camundongos , Transição Epitelial-Mesenquimal , Antineoplásicos/farmacologia , Transdução de Sinais , Neoplasias Gástricas/genética , Caderinas , Linhagem Celular Tumoral
9.
Molecules ; 28(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446837

RESUMO

Erythromycin is one of the few compounds that remarkably increase ether-a-go-go-related gene (hERG) inhibition from room temperature (RT) to physiological temperature (PT). Understanding how erythromycin inhibits the hERG could help us to decide which compounds are needed for further studies. The whole-cell patch clamp technique was used to investigate the effects of erythromycin on hERG channels at different temperatures. While erythromycin caused a concentration-dependent inhibition of cardiac hERG channels, it also shifted the steady-state activation and steady-state inactivation of the channel to the left and significantly accelerated the onset of inactivation at both temperatures, although temperature itself caused a profound change in the dynamics of hERG channels. Our data also suggest that the binding pattern to S6 of the channels changes at PT. In contrast, cisapride, a well-known hERG blocker whose inhibition is not affected by temperature, does not change its critical binding sites after the temperature is raised to PT. Our data suggest that erythromycin is unique and that the shift in hERG inhibition may not apply to other compounds.


Assuntos
Eritromicina , Canais de Potássio Éter-A-Go-Go , Eritromicina/farmacologia , Temperatura , Cisaprida/metabolismo , Cisaprida/farmacologia , Coração , Canal de Potássio ERG1 , Bloqueadores dos Canais de Potássio/farmacologia
11.
Comput Biol Med ; 161: 107066, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263064

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive and fatal malignancy. The current success of tumor immunotherapy has focused attention on intermediate T-cell subsets and the tumor microenvironment, which are essential for activation of the anti-tumor response. Therefore, both areas require further research to accelerate progress in developing tailored immunotherapeutic approaches for patients with TNBC. METHODS: We obtained scRNA-seq data of TNBC from the GEO database. A multiplex strategy was used to analyze and identify the T-cell heterogeneity of TNBC. By combining the METABRIC and GEO databases, a prognostic risk model for T-cell marker genes was constructed and validated. In addition, the immune-infiltrating cells of TNBC was analyzed using CIBERSORT, and the association between the risk model and response to immunotherapy was investigated. RESULTS: Based on scRNA-seq data, 25,932 cells were identified for multiple analyzes. T cells were studied with a focus on 2 subtypes, including CD8+ and CD4+. There were also communication relationships between T cells and multiple cell types. The results of the enrichment analysis showed that the T-cell marker genes were focused in pathways related to the immune system. In addition, OPTN, TMEM176A, PKM and HES1 deserve attention as prognostic markers in TNBC. The immune infiltration results showed that the high-risk group had significant immune cell infiltration and immunosuppression status. CONCLUSION: This study provides a resource for understanding T-cell heterogeneity and the associated prognostic risk model for TNBC. The results show that the model helps predict prognosis and response to treatment in breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Proteínas de Membrana/genética , Prognóstico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Linfócitos T , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/genética , Feminino
12.
Chin Med ; 18(1): 52, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165407

RESUMO

BACKGROUND: Yinzhihuang granules (YZHG) is a commonly used Chinese patent medicine for the treatment of liver disease. However, the mechanism of YZHG in alcoholic liver disease (ALD) is still unclear. METHODS: This study combined liquid chromatography-mass spectrometry technology, pharmacodynamics, network pharmacology and molecular docking methods to evaluate the potential mechanism of YZHG in the treatment of ALD. RESULTS: A total of 25 compounds including 4-hydroxyacetophenone, scoparone, geniposide, quercetin, baicalin, baicalein, chlorogenic acid and caffeic acid in YZHG were identified by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The pharmacodynamic investigations indicated that YZHG could improve liver function and the degree of liver tissue lesions, and reduce liver inflammation and oxidative stress in ALD mice. Network pharmacology analysis showed that YZHG treated ALD mainly by regulating inflammation-related signaling pathways such as the PI3K-Akt signaling pathway. The results of the PPI network and molecular docking showed that the targets of SRC, HSP90AA1, STAT3, EGFR and AKT1 could be the key targets of YZHG in the treatment of ALD. CONCLUSION: This study explored the potential compounds, potential targets and signaling pathways of YZHG in the treatment of ALD, which is helpful to clarify the efficacy and mechanism of YZHG and provide new insights for the clinical application of YZHG.

13.
J Ethnopharmacol ; 310: 116418, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36990301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY: This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS: Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS: From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS: YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Fígado
14.
Sci Rep ; 13(1): 1373, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697459

RESUMO

Stomach adenocarcinoma (STAD) is a type of cancer which often at itsadvanced stage apon diagnosis and mortality in clinical practice. Several factors influencethe prognosis of STAD, including the expression and regulation of immune cells in the tumor microenvironment. We here investigated the biomarkers related to the diagnosis and prognosis of gastric cancer, hoping to provide insights for the diagnosis and treatment of gastric cancer in the future. STAD and normal patient RNA sequencing data sets were accessed from the cancer genome atlas (TCGA database). Differential genes were determined and obtained by using the R package DESeq2. The stromal, immune, and ESTIMATE scores are calculated by the ESTIMATE algorithm, followed by the modular genes screening using the R package WGCNA. Subsequently, the intersection between the modular gene and the differential gene was taken and the STRING database was used for PPI network module analysis. The R packages clusterProfiler, enrichplot, and ggplot2 were used for GO and KEGG enrichment analysis. Cox regression analysis was used to screen survival-related genes, and finally, the R package Venn Diagram was used to take the intersection and obtain 7 hub genes. The time-dependent ROC curve and Kaplan-Meier survival curve were used to find the SERPINE1 gene, which plays a critical role in prognosis. Finally, the expression pattern, clinical characteristics, and regulatory mechanism of SERPINE1 were analyzed in STAD. We revealed that the expression of SERPINE1 was significantly increased in the samples from STAD compared with normal samples. Cox regression, time-dependent ROC, and Kaplan-Meier survival analyses demonstrated that SERPINE1 was significantly related to the adverse prognosis of STAD patients. The expression of SERPINE1 increased with the progression of T, N, and M classification of the tumor. In addition, the results of immune infiltration analysis indicated that the immune cells' expression were higher in high SERPINE1 expression group than that in low SERPINE1 expression group, including CD4+ T cells, B cells, CD8+ T cells, macrophages, neutrophils and other immune cells. SERPINE1 was closely related to immune cells in the STAD immune microenvironment and had a synergistic effect with the immune checkpoints PD1 and PD-L1. In conclusion, we proved that SERPINE1 is a promising prognostic and diagnostic biomarker for STAD and a potential target for immunotherapy.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Linfócitos T CD8-Positivos , Prognóstico , Biomarcadores , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Biologia Computacional , Mineração de Dados , Microambiente Tumoral/genética , Inibidor 1 de Ativador de Plasminogênio/genética
15.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677928

RESUMO

2-Aminoethoxydiphenyl borate (2-APB), a boron-containing compound, is a multitarget compound with potential as a drug precursor and exerts various effects in systems of the human body. Ion channels are among the reported targets of 2-APB. The effects of 2-APB on voltage-gated potassium channels (KV) have been reported, but the types of KV channels that 2-APB inhibits and the inhibitory mechanism remain unknown. In this paper, we discovered that 2-APB acted as an inhibitor of three representative human KV1 channels. 2-APB significantly blocked A-type Kv channel KV1.4 in a concentration-dependent manner, with an IC50 of 67.3 µM, while it inhibited the delayed outward rectifier channels KV1.2 and KV1.3, with IC50s of 310.4 µM and 454.9 µM, respectively. Further studies on KV1.4 showed that V549, T551, A553, and L554 at the cavity region and N-terminal played significant roles in 2-APB's effects on the KV1.4 channel. The results also indicated the importance of fast inactivation gating in determining the different effects of 2-APB on three channels. Interestingly, a current facilitation phenomenon by a short prepulse after 2-APB application was discovered for the first time. The docked modeling revealed that 2-APB could form hydrogen bonds with different sites in the cavity region of three channels, and the inhibition constants showed a similar trend to the experimental results. These findings revealed new molecular targets of 2-APB and demonstrated that 2-APB's effects on KV1 channels might be part of the reason for the diverse bioactivities of 2-APB in the human body and in animal models of human disease.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Humanos , Compostos de Boro/farmacologia , Canais Iônicos
16.
Chin Med ; 18(1): 7, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641437

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal cancers worldwide. Aidi injection (ADI) is a representative antitumor medication based on Chinese herbal injection, but its antitumor mechanisms are still poorly understood. MATERIALS AND METHODS: In this work, the subcutaneous xenograft model of human pancreatic cancer cell line Panc-1 was established in nude mice to investigate the anticancer effect of ADI in vivo. We then determined the components of ADI using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and explored the possible molecular mechanisms against pancreatic cancer using network pharmacology. RESULTS: In vivo experiments, the volume, weight, and degree of histological abnormalities of implanted tumors were significantly lower in the medium and high concentration ADI injection groups than in the control group. Network pharmacology analysis identified four active components of ADI and seven key targets, TNF, VEGFA, HSP90AA1, MAPK14, CASP3, P53 and JUN. Molecular docking also revealed high affinity between the active components and the target proteins, including Astragaloside IV to P53 and VEGFA, Ginsenoside Rb1 to CASP3 and Formononetin to JUN. CONCLUSION: ADI could reduce the growth rate of tumor tissue and alleviate the structural abnormalities in tumor tissue. ADI is predicted to act on VEGFA, P53, CASP3, and JUN in ADI-mediated treatment of pancreatic cancer.

17.
Comput Biol Med ; 152: 106460, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565482

RESUMO

BACKGROUND: T cells are present in all stages of tumor formation and play an important role in the tumor microenvironment. We aimed to explore the expression profile of T cell marker genes, constructed a prognostic risk model based on these genes in Lung adenocarcinoma (LUAD), and investigated the link between this risk model and the immunotherapy response. METHODS: We obtained the single-cell sequencing data of LUAD from the literature, and screened out 6 tissue biopsy samples, including 32,108 cells from patients with non-small cell lung cancer, to identify T cell marker genes in LUAD. Combined with TCGA database, a prognostic risk model based on T-cell marker gene was constructed, and the data from GEO database was used for verification. We also investigated the association between this risk model and immunotherapy response. RESULTS: Based on scRNA-seq data 1839 T-cell marker genes were identified, after which a risk model consisting of 9 gene signatures for prognosis was constructed in combination with the TCGA dataset. This risk model divided patients into high-risk and low-risk groups based on overall survival. The multivariate analysis demonstrated that the risk model was an independent prognostic factor. Analysis of immune profiles showed that high-risk groups presented discriminative immune-cell infiltrations and immune-suppressive states. Risk scores of the model were closely correlated with Linoleic acid metabolism, intestinal immune network for IgA production and drug metabolism cytochrome P450. CONCLUSION: Our study proposed a novel prognostic risk model based on T cell marker genes for LUAD patients. The survival of LUAD patients as well as treatment outcomes may be accurately predicted by the prognostic risk model, and make the high-risk population present different immune cell infiltration and immunosuppression state.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Linfócitos T , Adenocarcinoma de Pulmão/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética
18.
Exp Parasitol ; 242: 108391, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198331

RESUMO

The larvicidalproperty of graphene oxide (GO) and thiourea-reduced graphene oxide (T-rGO)was assessed against Culexquinquefasciatuslarvae. A simple water-soluble material synthesis method was used. The transformation of graphene into graphene oxide was accomplished in a single step. Under mild conditions, grapheneoxidewasdissolved in water to form a solution. Structure, optical, and microstructural features of the synthesized samples wereevaluatedusing a variety of analytical tools to compare the samples. Both GO and RGO, as well as GO, showed strong larvicidal potential when used against the third instar larvae of the Culexquinquefasciatus mosquito, with LC50and LC90values of 1.71 and 5.17 ppm and 1.89 and 5.00 ppm, respectively. As a result, our study showed that all of the GO and T-rGO under investigation create larvicidal compounds that could be employed to support efforts to control mosquito populations. It also offers an alternative method for producing GO and rGO on a big scale, which may be used in the future for a variety of biomedical applications.The binding efficacy of the active compounds against AChE1 was studied using Auto dock and the results were observed to be highly promising.


Assuntos
Grafite , Animais , Grafite/química , Óxidos/farmacologia , Óxidos/química , Tioureia/farmacologia , Sobrevivência Celular , Água
19.
Front Pharmacol ; 13: 998218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188623

RESUMO

Introduction: Systematic evaluation of the clinical efficacy and safety of Brucea javanica oil emulsion injection (BJOEI) in combination with chemotherapy in the treatment of malignant pleural effusion (MPE). Methods: The study searched CNKI, Wanfang database, VIP database, SinoMed, PubMed, Embase, the Cochrane Library, and the Web of Science database and retrieved randomized controlled trials (RCTs) on the treatment of MPE with BJOEI in combination with chemotherapy from seven electronic databases from inception to 31 March 2022. Meta-analysis and sensitivity analysis were performed using Revman 5.4 and Stata 13.0 software. Results: Ultimately, 30 RCTs with 2035 patients were included, including 1002 cases in the control group and 1033 cases in the treatment group. The results of the meta-analysis showed that the overall efficacy rate of BJOEI combined with chemotherapy was higher in the treatment of MPE compared with chemotherapy alone (RR = 1.45, 95%CI: 1.36-1.54, p < 0.00001). And it could improve the Karnofsky (KPS) score (RR = 1.54, 95%CI: 1.41-1.68, p < 0.00001), reduce adverse reactions such as fever (RR = 0.82, 95%CI:0.60-1.12), chest pain (RR = 0.90, 95%CI: 0.67-1.21), gastrointestinal reactions (RR = 0.70, 95%CI: 0.57-0.87, p < 0.005), and leukopenia (RR = 0.51, 95%CI: 0.43-0.61, p < 0.00001). Conclusion: BJOEI combined with chemotherapy has better clinical efficacy than chemotherapy alone in the treatment of MPE. It can further improve KPS score, improve patients' quality of life, and reduce the occurrence of adverse reactions. However, the conclusions of this study need to be confirmed by further randomized, double-blind, controlled trials with large sample size, reasonable design, and strict implementation.

20.
Front Pharmacol ; 13: 967164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059943

RESUMO

Shaogan Fuzi Decoction (SGFD), one of the classical prescriptions of Chinese Medicine, has a long history in the treatment of rheumatoid arthritis (RA), but definitive studies on its efficacy and mechanism of action are lacking. This study aims to elucidate the pharmacodynamic role of SGFD against RA and the potential mechanisms based on a combination of network pharmacology and experimental verification. The RA model in rats was induced by intradermal injection of bovine type Ⅱ collagen and incomplete Freund's adjuvant at the tail root. SGFD was administered once a day by oral gavage for 4 weeks. After SGFD administration, rat's arthritis index (AI) score and paw swelling decreased to some extent, and synovial inflammation, vascular hyperplasia, and cartilage destruction of the ankle joint were improved. Simultaneously, thymus and spleen index and serum levels of C-reactive protein (CRP) were lowered. Network pharmacology revealed that quercetin, kaempferol, naringenin, formononetin isorhamnetin and licochalcone A were the potentialiy active components, and IL6, TP53, TNF, PTGS2, MAPK3 and IL-1ß were potential key targets for SGFD in the treatment of RA. Ingredients-targets molecular docking showed that the components had the high binding activity to these target proteins. The mechanism of SGFD for RA involves various biological functions and is closely correlated with TNF signaling pathway, Osteoclast differentiation, T cell receptor signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, NF-κB signaling pathway, toll-like receptor signaling pathway, and so on. Western blot and ELISA showed that the expression of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) p65, phosphorylated c-Jun N-terminal kinase (p-JNK), p-p38, phosphorylated extracellular regulated kinase (p-ERK) and TNF-α was significantly upregulated in the synovium of RA rats, and the levels of serum inflammatory factors were significantly increased. SGFD inhibits the activation of the TLR4/NF-κB/MAPK pathway and the expression/production of pro-inflammatory cytokines. In summary, SGFD could improve the symptoms and inflammatory response in collagen-induced arthritis (CIA) rat model. The mechanism might be related to the regulation of TLR4/MAPKs/NF-κB signaling pathway and the reduction of inflammatory factor release, which partially confirms the results predicted by network pharmacology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA