Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(9): 3423-3433, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29457449

RESUMO

Dynamic single-chain polymeric nanoparticles (SCPNs) are intriguing, bioinspired architectures that result from the collapse or folding of an individual polymer chain into a nanometer-sized particle. Here we present a detailed biophysical study on the behavior of dynamic SCPNs in living cells and an evaluation of their catalytic functionality in such a complex medium. We first developed a number of delivery strategies that allowed the selective localization of SCPNs in different cellular compartments. Live/dead tests showed that the SCPNs were not toxic to cells while spectral imaging revealed that SCPNs provide a structural shielding and reduced the influence from the outer biological media. The ability of SCPNs to act as catalysts in biological media was first assessed by investigating their potential for reactive oxygen species generation. With porphyrins covalently attached to the SCPNs, singlet oxygen was generated upon irradiation with light, inducing spatially controlled cell death. In addition, Cu(I)- and Pd(II)-based SCPNs were prepared and these catalysts were screened in vitro and studied in cellular environments for the carbamate cleavage reaction of rhodamine-based substrates. This is a model reaction for the uncaging of bioactive compounds such as cytotoxic drugs for catalysis-based cancer therapy. We observed that the rate of the deprotection depends on both the organometallic catalysts and the nature of the protective group. The rate reduces from in vitro to the biological environment, indicating a strong influence of biomolecules on catalyst performance. The Cu(I)-based SCPNs in combination with the dimethylpropargyloxycarbonyl protective group showed the best performances both in vitro and in biological environment, making this group promising in biomedical applications.


Assuntos
Nanopartículas/química , Polímeros/química , Porfirinas/química , Oxigênio Singlete/química , Catálise , Morte Celular , Cobre/química , Células HeLa , Humanos , Luz , Nanopartículas/ultraestrutura , Paládio/química , Tamanho da Partícula
2.
Chem Sci ; 7(3): 2011-2015, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899925

RESUMO

A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

3.
ACS Macro Lett ; 4(3): 298-301, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35596332

RESUMO

We introduce a novel electrochemical method for the purification of complex water-soluble functional polymers contaminated with copper salts originating from copper-catalyzed azide/alkyne ligation chemistry, for which no standard purification protocol is suitable. A triethylene glycol methyl ether methacrylate (TEGMA) star polymer with 2-ureido-4H-pyrimidone (UPy) end groups was prepared via an activator generated by electron transfer atom transfer radical polymerization (AGET ATRP) and copper-catalyzed azide/alkyne cycloaddition (CuAAc) and selected as a model system for electrolysis of an aqueous polymer solution. We systematically investigate the influence of sample concentration, voltage, and time of electrolysis on the quality of the purification. Atom emission spectroscopy (AES) reveals almost quantitative removal of copper, and size exclusion chromatography (SEC) as well as proton nuclear magnetic resonance spectroscopy (1H NMR) ensure the full integrity of the polymer under all selected conditions.

4.
Macromol Rapid Commun ; 35(15): 1320-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962087

RESUMO

Here, a modular approach is reported to introduce a specific function into single-chain polymeric nanoparticles (SCPNs). Hereto, an amphiphilic polymer with pendant benzene-1,3,5-tricarboxamide (BTA) units is mixed with a "free" BTA that contains a functional group, either a fluorescent naphthalimide or a catalytically active l-proline. Taking advantage of hydrophobic interactions and self-recognition properties of the BTA units, the "free" BTAs are captured into the interior of the SCPN in water as evidenced by fluorescence studies. To illustrate that function can be readily introduced using a modular approach, l-proline-based BTAs are incorporated to procure a catalytically active SCPN in water. The aldol reaction between p-nitrobenzaldehyde and cyclohexanone shows good conversions at low catalyst loadings and substrate concentrations, and high stereoselectivities are obtained (de = 91% and ee = 98%).


Assuntos
Nanopartículas/química , Polímeros/química , Aldeídos/química , Benzamidas/química , Catálise , Cicloexanonas/química , Interações Hidrofóbicas e Hidrofílicas , Naftalimidas/química , Prolina/química , Espectrometria de Fluorescência , Estereoisomerismo , Água/química
5.
Chem Asian J ; 9(4): 1099-107, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24678056

RESUMO

ABA- and BAB-type triblock copolymers possessing pendant, self-assembling motifs in the A and B blocks were synthesized, with 2-ureidopyrimidinone (UPy) and benzene-1,3,5-tricarboxamide (BTA) for the A and B block, respectively. They were investigated to assess if and how the polymer's microstructure influences the self-assembly behavior of the supramolecular motifs and, as a result, the single-chain folding process. BAB-type triblock copolymers were synthesized via atom transfer radical polymerization (ATRP) with molecular weights ranging from 30 to 120 kg mol⁻¹; the BTA and UPy motifs were attached using a post-functionalization approach. The ABA-type triblock copolymers were available from previous work. In highly dilute solutions, both types of triblock copolymers fold into single-chain polymeric nanoparticles (SCPNs) via thermally induced BTA self-assembly and photo-triggered UPy dimerization. Chain collapse induced by intramolecular UPy dimerization was evaluated using size-exclusion chromatography (SEC). The BTA self-assembly was monitored by circular dichroism (CD) spectroscopy. The microstructures of SCPNs were visualized by atomic force microscopy (AFM). SEC analysis indicated a more loose packing for the BAB-type folded nanoparticles than for the ABA-type ones, which implies that topological differences in the polymer architecture do affect the folding behavior, although only slightly. The facile synthetic protocol developed here provides topologically different triblock architectures and opens up the area for single-chain folding technology that is applicable in artificial enzymatic systems with compartmentalized domains.


Assuntos
Polímeros/química , Catálise , Dicroísmo Circular , Ligação de Hidrogênio , Microscopia de Força Atômica , Nanopartículas/química
6.
J Am Soc Mass Spectrom ; 24(9): 1405-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23812871

RESUMO

Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks were always recorded when common MALDI matrices such as 4-hydroxy-α-cyanocinnamic acid (CHCA) were used. These compounds are mainly those with a benzene-1,3,5-tricarboxamide (BTA) or urea moiety, which are important building blocks to make new functional supramolecular materials. The possible mechanism of the adduct formation was investigated. A shared feature of the compounds studied is that they can form intermolecular hydrogen bonding with matrices like CHCA. The intermolecular hydrogen bonding will make the association between analyte ions and matrix molecules stronger. As a result, the analyte ions and matrix molecules in MALDI clusters will become more difficult to be separated from each other. Furthermore, it was found that analyte ions were mainly adducted with matrix salts, which is probably due to the much lower volatility of the salts compared with that of their corresponding matrix acids. It seems that the analyte-matrix adduct formation for our compounds are caused by the incomplete evaporation of matrix molecules from the MALDI clusters because of the combined effects of enhanced intermolecular interaction between analyte-matrix and of the low volatility of matrix salts. Based on these findings, strategies to suppress the analyte-matrix adduction are briefly discussed. In return, the positive results of using these strategies support the proposed mechanism of the analyte-matrix adduct formation.

7.
Chem Commun (Camb) ; 49(30): 3122-4, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23471136

RESUMO

Evaporative self-assembly of dilute solutions containing single-chain polymeric nanoparticles results in characteristic morphologies imaged using atomic force microscopy. Quantitative comparison of experimental data to morphologies obtained by lattice-gas simulations shows that the nonequilibrium patterns emerge from a complex interplay between dewetting, solvent evaporation and nanoparticle diffusion.


Assuntos
Nanopartículas/química , Polímeros/química , Microscopia de Força Atômica , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Volatilização
8.
J Am Chem Soc ; 135(31): 11421-4, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23465051

RESUMO

We here report the synthesis and characterization of a complex polymeric architecture based on a block copolymer with a cylindrical brush block and a single-chain polymeric nanoparticle block folded due to strong intramolecular hydrogen-bonds. The self-assembly of these constructs on mica surfaces was studied with atomic force microscopy, corroborating the distinct presence of block copolymer architectures.

10.
Angew Chem Int Ed Engl ; 51(45): 11297-301, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-22936630

RESUMO

The interplay of two subsequent aggregation processes results in a symmetry-breaking phenomenon in an achiral self-assembling system. Partially fluorinated benzene-1,3,5-tricarboxamide molecules self-assemble into a racemic mixture of one-dimensional P- and M-helical aggregates, followed by bundling into optically active higher-order aggregates or fibers.

11.
Chemistry ; 18(37): 11761-70, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22865655

RESUMO

The design of supramolecular motifs with tuneable stability and adjustable supramolecular polymerisation mechanisms is of crucial importance to precisely control the properties of supramolecular assemblies. This report focuses on constructing π-conjugated oligo(phenylene ethynylene) (OPE)-based one-dimensional helical supramolecular polymers that show a cooperative growth mechanism. Thus, a novel set of discotic molecules comprising a rigid OPE core, three amide groups, and peripheral solubilising wedge groups featuring C(3) and C(2) core symmetry was designed and synthesised. All of the discotic molecules are crystalline compounds and lack a columnar mesophase in the solid state. In dilute methylcyclohexane solution, one-dimensional supramolecular polymers are formed stabilised by threefold intermolecular hydrogen bonding and π-π interactions, as evidenced by (1)H NMR measurements. Small-angle X-ray and light scattering measurements reveal significant size differences between the columnar aggregates of C(3)- and C(2)-symmetrical discotics, that is, the core symmetry strongly influences the nature of the supramolecular polymerisation process. Temperature-dependent CD measurements show a highly cooperative polymerisation process for the C(3)-symmetrical discotics. In contrast, the self-assembly of C(2)-symmetrical discotics shows a smaller enthalpy release upon aggregation and decreased cooperativity. In all cases, the peripheral stereogenic centres induce a preferred handedness in the columnar helical aggregates. Moreover, one stereogenic centre suffices to fully bias the helicity in the C(2)-symmetrical discotics. Finally, chiral amplification studies with the C(3)-symmetrical discotics were performed by mixing chiral and achiral discotics (sergeants-and-soldiers experiment) and discotics of opposite chirality (majority-rules experiment). The results demonstrate a very strong sergeants-and-soldiers effect and a rather weak majority-rules effect.


Assuntos
Alcinos/síntese química , Éteres/síntese química , Alcinos/química , Éteres/química , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Polimerização
12.
Chemistry ; 16(3): 810-21, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20025000

RESUMO

N-Centred benzene-1,3,5-tricarboxamides (N-BTAs) composed of chiral and achiral alkyl substituents were synthesised and their solid-state behaviour and self-assembly in dilute alkane solutions were investigated. A combination of differential scanning calorimetry (DSC), polarisation optical microscopy (POM) and X-ray diffraction revealed that the chiral N-BTA derivatives with branched 3,7-dimethyloctanoyl chains were liquid crystalline and the mesophase was assigned as Col(ho). In contrast, N-BTA derivatives with linear tetradecanoyl or octanoyl chains lacked a mesophase and were obtained as crystalline compounds. Variable-temperature infrared spectroscopy showed the presence of threefold, intermolecular hydrogen bonding between neighbouring molecules in the mesophase of the chiral N-BTAs. In the crystalline state at room temperature a more complicated packing between the molecules was observed. Ultraviolet and circular dichroism spectroscopy on dilute solutions of N-BTAs revealed a cooperative self-assembly behaviour of the N-BTA molecules into supramolecular polymers with preferred helicity when chiral alkyl chains were present. Both the sergeants-and-soldiers as well as the majority-rules principles were operative in stacks of N-BTAs. In fact, the self-assembly of N-BTAs resembles closely that of their carbonyl (C=O)-centred counterparts, with the exception that aggregation is weaker and amplification of chirality is less pronounced. The differences in the self-assembly of N- and C=O-BTAs were analysed by density functional theory (DFT) calculations. These reveal a substantially lower interaction energy between the monomeric units in the supramolecular polymers of N-BTAs. The lower interaction energy is due to the higher energy penalty for rotation around the Ph--NH bond compared to the Ph--CO bond and the diminished magnitude of dipole-dipole interactions. Finally, we observed that mixed stacks are formed in dilute solution when mixing N-BTAs and C=O BTAs.

13.
J Am Chem Soc ; 132(2): 620-6, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20014837

RESUMO

By systematic variation of the chemical structure of benzene-1,3,5-tricarboxamide (BTA) derivatives, the effect of chemical structure on the amplification of chirality was studied and quantified. In combination with temperature-dependent amplification experiments, the limits of the majority-rules principle were also investigated. For all BTA derivatives a high, constant helix reversal penalty was determined, which is related to the intermolecular hydrogen bonds that are present in all studied derivatives. For asymmetrically substituted BTA derivatives an odd-even effect was found in the degree of chiral amplification when changing the position of the stereogenic center with respect to the amide functionality. It was found that the mismatch penalty could be directly related to the number of stereocenters present in the molecules. Increasing this number from one to three resulted in an increase in this energy penalty while leaving the helix reversal penalty unaffected. For the majority-rules principle this implies that a single stereocenter present in the molecule contains sufficient chiral information at the molecular level to result in a chirally amplified state at the supramolecular level. Further evidence that the mismatch penalty is directly related to the number of stereocenters was obtained from mixed majority-rules experiments where two BTA derivatives with different numbers of stereocenters with opposite stereoconfiguration were studied in a majority-rules experiment. Finally, the ultimate limits of chiral amplification for the majority-rules principle were investigated, revealing that, given a certain helix reversal penalty, there is an optimum to which the mismatch penalty can be reduced while also enhancing the degree of chiral amplification. Temperature-dependent majority-rules experiments could indeed confirm these simulations. These findings show the relevance of both energy penalties when trying to enhance the degree of chiral amplification for the majority-rules principle in a one-dimensional helical supramolecular polymer.


Assuntos
Polímeros/química , Substâncias Macromoleculares/química , Estrutura Molecular , Temperatura
14.
Chemistry ; 15(9): 2071-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19142935

RESUMO

Molecular organization: Chiral benzene tricarboxamides with methyl substituents at defined positions self-assemble into supramolecular polymers of preferred helicity by three-fold alpha-helical-type hydrogen bonding. The odd-even effect is operative and all derivatives are liquid crystalline showing a Col(ho) phase (see figure).Asymmetric benzene-1,3,5-tricarboxamides (aBTAs) comprising two n-octyl and one chiral methyl-alkyl side chain were synthesised and characterised. The influence of the position and the configuration of the chiral methyl group (methyl at the alpha, beta or gamma position) in the aliphatic side chains on the liquid-crystalline properties and the aggregation behaviour of the aBTAs was systematically studied and compared to symmetrical benzene-1,3,5-tricarboxamides (sBTAs). Solid-state characterisation (polarised optical microscopy, IR spectroscopy, X-ray diffraction and differential scanning calorimetry) revealed that all aBTAs show threefold, alpha-helical-type intermolecular hydrogen bonding between neighbouring molecules and exhibit a columnar hexagonal organisation from room temperature to well above 200 degrees C. Moving the chiral methyl group closer to the amide group stabilises the liquid-crystalline state, as evidenced by a higher clearing temperature and corresponding enthalpy. The self-assembly of dilute solutions of the aBTAs in methylcyclohexane ( approximately 10(-5) mol L(-1)) was investigated with circular dichroism (CD) spectroscopy. The sign of the Cotton effect demonstrated a pronounced odd-even effect, whereas the value of the molar ellipticity, Deltaepsilon, in the aBTAs was independent of the position of the methyl group. Subsequent temperature-dependent CD measurements showed that the aggregation of all aBTAs can quantitatively be described by the nucleation-growth model and that the stability of the aggregates increases when the chiral methyl group is closer to the amide moiety. The results presented herein illustrate that even small changes in the molecular structure of substituted benzene-1,3,5-tri-carboxamides affect their solid-state properties and their self-assembly behaviour in dilute solutions.

15.
Chem Commun (Camb) ; (36): 4306-8, 2008 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-18802552

RESUMO

Substitution of hydrogen bond directed supramolecular assemblies with ethylene glycol chains leads to a reduction in the association constant in apolar solvents, where the reduction of the association constant is dependent on the length of the aliphatic spacer connecting the hydrogen bonds and the ethylene glycol chain.


Assuntos
Etilenoglicol/química , Termodinâmica , Dicroísmo Circular , Ligação de Hidrogênio , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Padrões de Referência , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA