Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 7(72): eabo0226, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35357886

RESUMO

SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. After vaccination of mice, the MVA/SdFCS vaccine induced eightfold higher neutralizing antibodies compared with MVA/S, which expressed spike without FCS inactivation, and protected against the Beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU), or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, and rectum) that neutralized the homologous (WA-1/2020) and heterologous VOCs, including Delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both spike- and nucleocapsid-specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared with IM vaccination. After challenge with the SARS-CoV-2 Delta variant, the IM route induced robust protection, the BU route induced moderate protection, and the SL route induced no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.


Assuntos
COVID-19 , Hepatite D , Vacínia , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Macaca mulatta , Camundongos , Nucleocapsídeo/metabolismo , SARS-CoV-2 , Vaccinia virus/metabolismo
2.
Sci Immunol ; 6(61)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266981

RESUMO

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Saccharomycetales/genética , Glicoproteína da Espícula de Coronavírus/genética , Administração por Inalação , Administração Intranasal , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Citocinas/imunologia , Humanos , Imunoglobulina G/imunologia , Pulmão/patologia , Macaca mulatta , Masculino , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
3.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631118

RESUMO

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , SARS-CoV-2/imunologia , Vacinas de DNA/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Imunofenotipagem , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação/métodos , Vacinas de DNA/genética
4.
J Med Primatol ; 50(1): 75-78, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277721

RESUMO

Amitriptyline is a tricyclic antidepressant commonly prescribed in humans for pain and sleep disorders and in non-human primates for self-injurious behaviors. Here, we report a clinical case on the teratogenic effect of maternal-fetal amitriptyline exposure.


Assuntos
Amitriptilina/efeitos adversos , Antidepressivos Tricíclicos/efeitos adversos , Macaca mulatta/anormalidades , Teratogênese , Teratogênicos , Animais , Feminino , Exposição Materna
5.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
6.
bioRxiv ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32995780

RESUMO

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.

7.
J Am Assoc Lab Anim Sci ; 57(4): 357-367, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764539

RESUMO

Because tetanus can cause significant morbidity and mortality in NHP, colonywide vaccination with tetanus toxoid is recommended for outdoor breeding colonies of rhesus macaques, with primary immunizations commonly given to infants at 6 mo of age followed by booster vaccines every 10 y. Maternal antibodies are thought to offer protective immunity to infants younger than 6 mo. However, historical colony data from the Yerkes National Primate Research Center show a higher incidence of tetanus among infants (≤ 6 mo old) born to subordinate dams. Whether this higher incidence of infantile tetanus is due to a higher incidence of trauma among subordinate animals or is a stress-induced impairment of maternal antibody protection is unknown. Studies in other NHP species suggest that chronic exposure to social stressors interferes with the receptor-mediated transplacental transfer of IgG. Therefore, the primary aim of this study was to determine whether chronic stress associated with social subordination impairs prenatal transfer of antitetanus immunity in breeding female rhesus macaques. Subjects included 26 high- and 26 low-ranking adult female rhesus macaques that were nearly 5 or 10 y after their initial immunization and their nonimmunized infants. We hypothesized that infants born to subordinate dams that were nearly 10 y after immunization would have the lowest infant-to-dam antibody ratios and thus would be at greatest risk for infection. Results revealed no significant intergroup differences in infant antitetanus IgG levels. However, infant-to-dam IgG ratios against tetanus were significantly lower among subordinate animals compared with dominant macaques, after accounting for the number of years since the dam's initial vaccination. In addition, higher maternal hair cortisol levels predicted lower infantto-dam tetanus toxoid IgG ratios. Together, these findings suggest that chronic social stress in female rhesus macaques may hamper the prenatal transfer of antitetanus immunity to offspring.


Assuntos
Anticorpos Antibacterianos/sangue , Imunidade Materno-Adquirida , Macaca mulatta/fisiologia , Estresse Fisiológico/fisiologia , Toxoide Tetânico/administração & dosagem , Animais , Feminino , Humanos , Macaca mulatta/imunologia , Masculino , Gravidez , Comportamento Social , Vacinação
8.
Antiviral Res ; 87(3): 318-28, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20600333

RESUMO

Arenaviruses are rodent-borne negative strand RNA viruses and infection of these viruses in humans may result in disease and hemorrhagic fever. To date, supportive care, ribavirin, and in some cases immune plasma remain the foremost treatment options for arenaviral hemorrhagic fever. Research with the hemorrhagic fever causing-arenaviruses usually requires a Biosafety level (BSL)-4 environment; however, surrogate animal model systems have been developed to preliminarily study and screen various vaccines and antivirals. The Syrian golden hamster-Pirital virus (PIRV) surrogate model of hemorrhagic fever provides an opportunity to test new antivirals in an ABSL-3 setting. Thus, we challenged hamsters, implanted with telemetry, with PIRV and observed viremia and tissue viral titers, and changes in core body temperature, hematology, clinical chemistry, and coagulation parameters. Physical signs of disease of the PIRV-infected hamsters included weight loss, lethargy, petechial rashes, epistaxis, ocular orbital and rectal hemorrhage, and visible signs of neurologic disorders. However, treating animals with genistein, a plant derived isoflavone and general kinase inhibitor, resulted in increased survival rates and led to an improved clinical profile. In all, the results from this study demonstrate the potential of a general kinase inhibitor genistein as an antiviral against arenaviral hemorrhagic fever.


Assuntos
Antivirais/administração & dosagem , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus do Novo Mundo/patogenicidade , Genisteína/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/isolamento & purificação , Análise Química do Sangue , Coagulação Sanguínea , Temperatura Corporal , Cricetinae , Modelos Animais de Doenças , Feminino , Mesocricetus , Índice de Gravidade de Doença , Análise de Sobrevida , Telemetria , Carga Viral , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA