Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314342

RESUMO

The synthesis of racemic substituted 7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one hydrochlorides was optimized to enhance reproducibility and increase the overall yield. In order to investigate their specificity, series of enzyme inhibition assays were carried out against a diversity of proteases, covering representative members of aspartic, cysteine, metallo and serine endopeptidases and including eight members of the monometallic M1 family of aminopeptidases as well as two members of the bimetallic M17 and M28 aminopeptidase families. This aminobenzosuberone scaffold indeed demonstrated selective inhibition of M1 aminopeptidases to the exclusion of other tested protease families; it was particularly potent against mammalian APN and its bacterial/parasitic orthologues EcPepN and PfAM1.


Assuntos
Aminopeptidases/antagonistas & inibidores , Aminopeptidases/química , Cumarínicos/química , Cumarínicos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Biomacromolecules ; 19(9): 3840-3852, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095907

RESUMO

A novel, multifunctional hydrogel that exhibits a unique set of properties for the effective treatment of pancreatic cancer (PC) is presented. The material is composed of a pentablock terpolypeptide of the type PLys- b-(PHIS- co-PBLG)-PLys- b-(PHIS- co-PBLG)- b-PLys, which is a noncytotoxic polypeptide. It can be implanted via the least invasive route and selectively delivers gemcitabine to efficiently treat PC. Simply mixing the novel terpolypeptide with an aqueous solution of gemcitabine within a syringe results in the facile formation of a hydrogel that has the ability to become liquid under the shear rate of the plunger. Upon injection in the vicinity of cancer tissue, it immediately reforms into a hydrogel due to the unique combination of its macromolecular architecture and secondary structure. Because of its pH responsiveness, the hydrogel only melts close to PC; thus, the drug can be delivered directionally toward the cancerous rather than healthy tissues in a targeted, controlled, and sustained manner. The efficacy of the hydrogel was tested in vivo on human to mouse xenografts using the drug gemcitabine. It was found that the efficacy of the hydrogel loaded with only 40% of the drug delivered in one dose was equal to or slightly better than the peritumoral injection of 100% of the free drug delivered in two doses, the typical chemotherapy used in clinics so far. This result suggests that the hydrogel can direct the delivery of the encapsulated drug effectively in the tumor tissue. Enzymes lead to its biodegradation, avoiding removal by resection of the polypeptidic carrier after cargo delivery. The unique properties of the hydrogel formed can be predetermined through its molecular characteristics, rendering it a promising modular material for many biological applications.


Assuntos
Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Liberação Controlada de Fármacos , Hidrogéis/química , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Feminino , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos NOD , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Gencitabina
3.
Biochemistry ; 56(10): 1546-1558, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28218509

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that is important for the generation of antigenic epitopes and major histocompatibility class I-restricted adaptive immune responses. ERAP1 processes a vast variety of different peptides but still shows length and sequence selectivity, although the mechanism behind these properties is poorly understood. X-ray crystallographic analysis has revealed that ERAP1 can assume at least two distinct conformations in which C-terminal domain IV is either proximal or distal to active site domain II. To improve our understanding of the role of this conformational change in the catalytic mechanism of ERAP1, we used site-directed mutagenesis to perturb key salt bridges between domains II and IV. Enzymatic analysis revealed that these mutations, although located away from the catalytic site, greatly reduce the catalytic efficiency and change the allosteric kinetic behavior. The variants were more efficiently activated by small peptides and bound a competitive inhibitor with weaker affinity and faster dissociation kinetics. Molecular dynamics analysis suggested that the mutations affect the conformational distribution of ERAP1, reducing the population of closed states. Small-angle X-ray scattering indicated that both the wild type and the ERAP1 variants are predominantly in an open conformational state in solution. Overall, our findings suggest that electrostatic interactions between domains II and IV in ERAP1 are crucial for driving a conformational change that regulates the structural integrity of the catalytic site. The extent of domain opening in ERAP1 probably underlies its specialization for antigenic peptide precursors and should be taken into account in inhibitor development efforts.


Assuntos
Aminopeptidases/química , Retículo Endoplasmático/enzimologia , Antígenos de Histocompatibilidade Menor/química , Mutação , Sequência de Aminoácidos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Biocatálise , Domínio Catalítico , Linhagem Celular , Clonagem Molecular , Expressão Gênica , Humanos , Cinética , Lepidópteros/citologia , Lepidópteros/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais/química , Eletricidade Estática , Termodinâmica
4.
ACS Med Chem Lett ; 7(7): 681-5, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27437077

RESUMO

We employed virtual screening followed by in vitro evaluation to discover novel inhibitors of ER aminopeptidase 1, an important enzyme for the human adaptive immune response that has emerged as an attractive target for cancer immunotherapy and the control of autoimmunity. Screening hits included three structurally related compounds carrying the (E)-N'-((1H-indol-3-yl)methylene)-1H-pyrazole-5-carbohydrazide scaffold and (2-carboxylatophenyl)sulfanyl-ethylmercury as novel ERAP1 inhibitors. The latter, also known as thimerosal, a common component in vaccines, was found to inhibit ERAP1 in the submicromolar range and to present strong selectivity versus the homologous aminopeptidases ERAP2 and IRAP. Cell-based analysis indicated that thimerosal can effectively reduce ERAP1-dependent cross-presentation by dendritic cells in a dose-dependent manner.

5.
Mol Immunol ; 67(2 Pt B): 426-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26224046

RESUMO

Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) generates antigenic peptides for loading onto Major Histocompatibility Class I molecules (MHCI) and can regulate adaptive immune responses. During the last few years, many genetic studies have revealed strong associations between coding Single Nucleotide Polymorphisms (SNPs) in ERAP1 and common human diseases ranging from viral infections to cancer and autoimmunity. Functional studies have established that these SNPs affect enzyme activity resulting to changes in antigenic peptide processing, presentation by MHCI and cellular cytotoxic responses. These disease-associated polymorphisms are, however, located away from the enzyme's active site and are interspersed to different structural domains. As a result, the mechanism by which these SNPs can affect function remains largely elusive. ERAP1 utilizes a complex catalytic mechanism that involves a large conformational change between inactive and active forms and has the unique property to trim larger peptides more efficiently than smaller ones. We analyzed two of the most consistently discovered disease-associated polymorphisms, namely K528R and Q730E, for their effect on the ability of the enzyme to select substrates based on length and to undergo conformational changes. By utilizing enzymatic and computational analysis we propose that disease-associated SNPs can affect ERAP1 function by influencing: (i) substrate length selection and (ii) the conformational distribution of the protein ensemble. Our results provide novel insight on the mechanisms by which polymorphic variation distal from the active site of ERAP1 can translate to changes in function and contribute to immune system variability in humans.


Assuntos
Aminopeptidases/genética , Polimorfismo de Nucleotídeo Único/genética , Aminopeptidases/química , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Fluorescência , Humanos , Leucil Aminopeptidase/metabolismo , Antígenos de Histocompatibilidade Menor , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Análise de Componente Principal , Estrutura Terciária de Proteína , Especificidade por Substrato
6.
Front Oncol ; 4: 363, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566501

RESUMO

Endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) are key components on the pathway that generates antigenic epitopes for presentation to cytotoxic T-lymphocytes (CTLs). Coding single nucleotide polymorphisms (SNPs) in these enzymes have been associated with pre-disposition to several major human diseases including inflammatory diseases with autoimmune etiology, viral infections, and virally induced cancer. The function of these enzymes has been demonstrated to affect CTL and natural killer cell responses toward healthy and malignant cells as well as the production of inflammatory cytokines. Recent studies have demonstrated that SNPs in ERAP1 and ERAP2 can affect their ability to generate or destroy antigenic epitopes and define the immunopeptidome. In this review, we examine the potential role of these enzymes and their polymorphic states on the generation of cytotoxic responses toward malignantly transformed cells. Given the current state-of-the-art, it is possible that polymorphic variation in these enzymes may contribute to the individual's pre-disposition to cancer through altered generation or destruction of tumor antigens that can facilitate tumor immune evasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA