Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Risk Anal ; 27(1): 241-54, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17362412

RESUMO

The food industry faces two paradoxical demands: on the one hand, foods need to be microbiologically safe for consumption and on the other hand, consumers want fresh, minimally processed foods. To meet these demands, more insight into the mechanisms of microbial growth is needed, which includes, among others, the microbial lag phase. This is the time needed by bacterial cells to adapt to a new environment (for example, after food product contamination) before starting an exponential growth regime. Since food products are often contaminated with low amounts of pathogenic microorganisms, it is important to know the distribution of these individual cell lag times to make accurate predictions concerning food safety. More precisely, cells with the shortest lag times (i.e., appearing in the left tail of the distribution) are largely decisive for the outgrowth of the population. In this study, an integrated modeling approach is proposed and applied to an existing data set of individual cell lag time measurements of Listeria monocytogenes. In a first step, a logistic modeling approach is applied to predict the fraction of zero-lag cells (which start growing immediately) as a function of temperature, pH, and water activity. For the nonzero-lag cells, the mean and variance of the lag time distribution are modeled with a hyperbolic-type model structure. This mean and variance allow identification of the parameters of a two-parameter Weibull distribution, representing the nonzero-lag cell lag time distribution. The integration of the developed models allows prediction of a global distribution of individual cell lag times for any combination of environmental conditions in the interpolation domain of the original temperature, pH, and water activity settings. The global fitting quality of the model is quantified using several measures indicating that the model gives accurate predictions, erring slightly on the fail-safe side when predicting the shortest lag times.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes/metabolismo , Medição de Risco , Contaminação de Alimentos , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Processos Estocásticos , Temperatura , Fatores de Tempo , Água/química , Água/metabolismo
2.
J Food Prot ; 67(9): 2041-52, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15453600

RESUMO

Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiologia de Alimentos , Modelos Biológicos , Modelos Teóricos , Medição de Risco/métodos , Meio Ambiente , Previsões , Humanos , Matemática , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA