Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Protein J ; 42(6): 802-810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787923

RESUMO

NifA is a σ54 activator that turns on bacterial nitrogen fixation under reducing conditions and when fixed cellular nitrogen levels are low. The redox sensing mechanism in NifA is poorly understood. In α- and ß-proteobacteria, redox sensing involves two pairs of Cys residues within and immediately following the protein's central AAA+ domain. In this work, we examine if an additional Cys pair that is part of a C(X)5 C motif and located immediately upstream of the DNA binding domain of NifA from the α-proteobacterium Gluconacetobacter diazotrophicus (Gd) is involved in redox sensing. We hypothesize that the Cys residues' redox state may directly influence the DNA binding domain's DNA binding affinity and/or alter the protein's oligomeric sate. Two DNA binding domain constructs were generated, a longer construct (2C-DBD), consisting of the DNA binding domain with the upstream Cys pair, and a shorter construct (NC-DBD) that lacks the Cys pair. The Kd of NC-DBD for its cognate DNA sequence (nifH-UAS) is equal to 20.0 µM. The Kd of 2C-DBD for nifH-UAS when the Cys pair is oxidized is 34.5 µM. Reduction of the disulfide bond does not change the DNA binding affinity. Additional experiments indicate that the redox state of the Cys residues does not influence the secondary structure or oligomerization state of the NifA DNA binding domain. Together, these results demonstrate that the Cys pair upstream of the DNA binding domain of Gd-NifA does not regulate DNA binding or domain dimerization in a redox dependent manner.


Assuntos
Proteínas de Bactérias , Nitrogenase , Nitrogenase/genética , Nitrogenase/metabolismo , Proteínas de Bactérias/química , Fatores de Transcrição/genética , Fixação de Nitrogênio/genética , DNA/metabolismo , Genes Bacterianos
2.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747931

RESUMO

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Assuntos
Neurônios , Doenças Priônicas , Príons , Sulfotransferases , Animais , Camundongos , Heparitina Sulfato/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
3.
Acta Neuropathol ; 146(1): 31-50, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37154939

RESUMO

Tau neurofibrillary tangles are a hallmark of Alzheimer's disease neuropathological change. However, it remains largely unclear how distinctive Alzheimer's disease tau seeds (i.e. 3R/4R) correlate with histological indicators of tau accumulation. Furthermore, AD tau co-pathology is thought to influence features and progression of other neurodegenerative diseases including Lewy body disease; yet measurements of different types of tau seeds in the setting of such diseases is an unmet need. Here, we use tau real-time quaking-induced conversion (RT-QuIC) assays to selectively quantitate 3R/4R tau seeds in the frontal lobe which accumulates histologically identifiable tau pathology at late disease stages of AD neuropathologic change. Seed quantitation across a spectrum of neurodegenerative disease cases and controls indicated tau seeding activity can be detected well before accompanying histopathological indication of tau deposits, and even prior to the earliest evidence of Alzheimer's-related tau accumulation anywhere in the brain. In later stages of AD, 3R/4R tau RT-QuIC measures correlated with immunohistochemical tau burden. In addition, Alzheimer's tau seeds occur in the vast majority of cases evaluated here inclusive of primary synucleinopathies, frontotemporal lobar degeneration and even controls albeit at multi-log lower levels than Alzheimer's cases. α-synuclein seeding activity confirmed synucleinopathy cases and further indicated the co-occurrence of α-synuclein seeds in some Alzheimer's disease and primary tauopathy cases. Our analysis indicates that 3R/4R tau seeds in the mid-frontal lobe correlate with the overall Braak stage and Alzheimer's disease neuropathologic change, supporting the quantitative predictive value of tau RT-QuIC assays. Our data also indicate 3R/4R tau seeds are elevated in females compared to males at high (≥ IV) Braak stages. This study suggests 3R/4R tau seeds are widespread even prior to the earliest stages of Alzheimer's disease changes, including in normal, and even young individuals, with prevalence across multiple neurodegenerative diseases to further define disease subtypes.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Sinucleinopatias , Tauopatias , Feminino , Humanos , Masculino , alfa-Sinucleína , Doença de Alzheimer/patologia , Proteínas tau , Tauopatias/patologia
4.
Cell Tissue Res ; 392(1): 323-335, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35258712

RESUMO

The accumulation of misfolded proteins as amyloid fibrils in the brain is characteristic of most neurodegenerative disorders. These misfolded proteins are capable of self-amplifying through protein seeding mechanisms, leading to accumulation in the host. First shown for PrP prions and prion diseases, it is now recognized that self-propagating misfolded proteins occur broadly in neurodegenerative diseases and include amyloid-ß (Aß) and tau in Alzheimer's disease (AD), tau in chronic traumatic encephalopathy (CTE), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), and α-synuclein (α-syn) in Parkinson's disease (PD) and Lewy body dementias (LBD). Techniques able to directly measure these bioactive protein seeds include the real-time quaking-induced conversion (RT-QuIC) assays. Initially developed for the detection of PrP prions and subsequently for the detection of other misfolded protein seeds, these assays take advantage of the mechanism of protein-based self-propagation to result in exponential amplification of the initial protein seeds from biospecimens. Disease-specific "protein seeds" recruit and template the misfolding of native recombinant protein substrates to elongate amyloid fibrils. The amplification power of these assays allows for detection of minute amounts of disease-specific protein seeds to better support early and accurate diagnosis. In addition to the diagnostic capabilities, assay readouts have been shown to reveal biochemical, structural, and kinetic information of protein seed self-propagation. This review examines the various protein seed amplification assays currently available for distinct neurodegenerative diseases, with a focus on RT-QuIC assays, along with the insights their readouts provide into protein seed structures and strain differences.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Príons , Humanos , Amiloide/metabolismo , Doença de Alzheimer/diagnóstico , Príons/metabolismo , alfa-Sinucleína/metabolismo , Doença por Corpos de Lewy/metabolismo , Encéfalo/metabolismo
6.
Nat Commun ; 13(1): 4005, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831291

RESUMO

Little is known about the structural basis of prion strains. Here we provide a high (3.0 Å) resolution cryo-electron microscopy-based structure of infectious brain-derived fibrils of the mouse anchorless RML scrapie strain which, like the recently determined hamster 263K strain, has a parallel in-register ß-sheet-based core. Several structural motifs are shared between these ex vivo prion strains, including an amino-proximal steric zipper and three ß-arches. However, detailed comparisons reveal variations in these shared structural topologies and other features. Unlike 263K and wildtype RML prions, the anchorless RML prions lack glycophosphatidylinositol anchors and are severely deficient in N-linked glycans. Nonetheless, the similarity of our anchorless RML structure to one reported for wildtype RML prion fibrils in an accompanying paper indicates that these post-translational modifications do not substantially alter the amyloid core conformation. This work demonstrates both common and divergent structural features of prion strains at the near-atomic level.


Assuntos
Príons , Scrapie , Amiloide , Animais , Encéfalo/metabolismo , Microscopia Crioeletrônica , Camundongos , Príons/metabolismo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA