Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(41): 46296-46305, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32938183

RESUMO

Under radiative environments such as extended hard X- or γ-rays, degradation of scintillation performance is often due to irradiation-induced defects. To overcome the effect of deleterious defects, novel design mitigation strategies are needed to identify and design more resilient materials. The potential for band-edge engineering to eliminate the effect of radiation-induced defect states in rare-earth-doped perovskite scintillators is explored, taking Ce3+-doped LuAlO3 as a model material system, using density functional theory (DFT)-based DFT + U and hybrid Heyd-Scuseria-Ernzerhof (HSE) calculations. From spin-polarized hybrid HSE calculations, the Ce3+ activator ground-state 4f position is determined to be 2.81 eV above the valence band maximum in LuAlO3. Except for the oxygen vacancies which have a deep level inside the band gap, all other radiation-induced defects in LuAlO3 have shallow defect states or are outside the band gap, that is, relatively far away from either the 5d1 or the 4f Ce3+ levels. Finally, we examine the role of Ga doping at the Al site and found that LuGaO3 has a band gap that is more than 2 eV smaller than that of LuAlO3. Specifically, the lowered conduction band edge envelopes the defect gap states, eliminating their potential impact on scintillation performance and providing direct theoretical evidence for how band-edge engineering could be applied to rare-earth-doped perovskite scintillators.

2.
Inorg Chem ; 56(1): 125-137, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983828

RESUMO

We present a study of the diffusion of krypton in UO2 using atomic scale calculations combined with diffusion models adapted to the system studied. The migration barriers of the elementary mechanisms for interstitial or vacancy assisted migration are calculated in the DFT+U framework using the nudged elastic band method. The attempt frequencies are obtained from the phonon modes of the defect at the initial and saddle points using empirical potential methods. The diffusion coefficients of Kr in UO2 are then calculated by combining this data with diffusion models accounting for the concentration of vacancies and the interaction of vacancies with Kr atoms. We determined the preferred mechanism for Kr migration and the corresponding diffusion coefficient as a function of the oxygen chemical potential µO or nonstoichiometry. For very hypostoichiometric (or U-rich) conditions, the most favorable mechanism is interstitial migration. For hypostoichiometric UO2, migration is assisted by the bound Schottky defect and the charged uranium vacancy, VU4-. Around stoichiometry, migration assisted by the charged uranium-oxygen divacancy (VUO2-) and VU4- is the favored mechanism. Finally, for hyperstoichiometric or O-rich conditions, the migration assisted by two VU4- dominates. Kr migration is enhanced at higher µO, and in this regime, the activation energy will be between 4.09 and 0.73 eV depending on nonstoichiometry. The experimental values available are in the latter interval. Since it is very probable that these values were obtained for at least slightly hyperstoichiometric samples, our activation energies are consistent with the experimental data, even if further experiments with precisely controlled stoichiometry are needed to confirm these results. The mechanisms and trends with nonstoichiometry established for Kr are similar to those found in previous studies of Xe.

3.
J Phys Chem B ; 118(35): 10430-5, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25127298

RESUMO

Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.


Assuntos
Pareamento de Bases , Radioisótopos de Carbono/química , DNA/química , Ligação de Hidrogênio , Modelos Químicos , Modelos Genéticos , Nitrogênio/química , Fótons
4.
Phys Chem Chem Phys ; 15(37): 15550-64, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23942481

RESUMO

Density functional theory (DFT) calculations have been performed on A(2+)B2(3+)O4(2-) (where A(2+) = Fe, Ni or Zn, and B(3+) = Fe or Cr) spinel oxides in order to determine some of their thermodynamic properties. Mixing energies were calculated for Fe3O4-NiFe2O4, Fe3O4-ZnFe2O4, Fe3O4-FeCr2O4, NiFe2O4-ZnFe2O4, NiFe2O4-NiCr2O4, FeCr2O4-NiCr2O4, FeCr2O4-ZnCr2O4 and ZnCr2O4-ZnFe2O4 pseudo-binaries based on special quasi random (SQS) structures to account for cationic disorder. The results generally agree with available experimental data and the rule that two normal or two inverse spinel compounds easily form solid solutions, while inverse-normal spinel mixtures exhibit positive deviation from solid solution behavior (i.e. immiscibility). Even though the NiFe2O4-NiCr2O4 and Fe3O4-FeCr2O4 systems obey this rule, they exhibit additional features with implications for the corresponding phase diagrams. In addition to mixing enthalpies, non-stoichiometry was also considered by calculating the energies of the relevant defect reactions resulting in A, B and O excess (or deficiency). The DFT calculations predict close to zero or slightly exothermic reactions for both A and B excess in a number of spinel compounds.

5.
Phys Chem Chem Phys ; 14(16): 5680-5, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22434034

RESUMO

Cation mixing energetics in urania-ceria solid solutions with stoichiometric oxygen concentrations (U(1-y)Ce(y)O(2)) have been measured by high-temperature oxide-melt drop-solution calorimetry. Measurements have been performed on eight samples with compositions spanning y = 0.119 to y = 0.815. The measured mixing enthalpies (ΔH(mix)) range from -0.6 ± 3.3 to 3.9 ± 3.0 kJ mol(-1). These values are discussed in the context of results from atomistic modeling which take into consideration the possibility of charge transfer between uranium and cerium cations to form solid solutions with mixed charge states. A comparison between measured and calculated results for ΔH(mix) suggests that such charge transfer takes place to a limited extent in the most concentrated mixtures studied.

6.
Nat Mater ; 6(3): 217-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322869

RESUMO

Ceramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance. Here, we examine trends in radiation damage behaviour for families of compounds related by crystal structure. Specifically, we consider oxides with structures related to the fluorite crystal structure. We demonstrate that improved amorphization resistance characteristics are to be found in compounds that have a natural tendency to accommodate lattice disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA