Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Dis Model Mech ; 15(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34842271

RESUMO

Planar cell polarity (PCP) signalling is vital for initiation of mouse neurulation, with diminished convergent extension (CE) cell movements leading to craniorachischisis, a severe neural tube defect (NTD). Some humans with NTDs also have PCP gene mutations but these are heterozygous, not homozygous as in mice. Other genetic or environmental factors may interact with partial loss of PCP function in human NTDs. We found that reduced sulfation of glycosaminoglycans interacts with heterozygosity for the Lp allele of Vangl2 (a core PCP gene), to cause craniorachischisis in cultured mouse embryos, with rescue by exogenous sulphate. We hypothesized that this glycosaminoglycan-PCP interaction may regulate CE, but, surprisingly, DiO labelling of the embryonic node demonstrates no abnormality of midline axial extension in sulfation-depleted Lp/+ embryos. Positive-control Lp/Lp embryos show severe CE defects. Abnormalities were detected in the size and shape of somites that flank the closing neural tube in sulfation-depleted Lp/+ embryos. We conclude that failure of closure initiation can arise by a mechanism other than faulty neuroepithelial CE, with possible involvement of matrix-mediated somite expansion, adjacent to the closing neural tube.


Assuntos
Polaridade Celular , Defeitos do Tubo Neural , Animais , Interação Gene-Ambiente , Camundongos , Proteínas do Tecido Nervoso/genética , Tubo Neural , Defeitos do Tubo Neural/genética
2.
Genet Med ; 23(9): 1636-1647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145395

RESUMO

PURPOSE: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach. METHODS: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort. Functional effects of duplications in PPP2R3B were investigated using immunohistochemistry, transcriptomics, and stable inducible cellular models, themselves characterized using RNAseq, quantitative real-time polymerase chain reaction (qRT-PCR), reverse phase protein arrays, immunoblotting, RNA interference, immunocytochemistry, proliferation, and migration assays. RESULTS: We identify here a previously unreported genetic susceptibility to melanoma and melanocytic nevi, familial duplications of gene PPP2R3B. This encodes PR70, a regulatory unit of critical phosphatase PP2A. Duplications increase expression of PR70 in human nevus, and increased expression in melanoma tissue correlates with survival via a nonimmunological mechanism. PPP2R3B overexpression induces pigment cell switching toward proliferation and away from migration. Importantly, this is independent of the known microphthalmia-associated transcription factor (MITF)-controlled switch, instead driven by C21orf91. Finally, C21orf91 is demonstrated to be downstream of MITF as well as PR70. CONCLUSION: This work confirms the power of a rare disease approach, identifying a previously unreported copy-number change predisposing to melanocytic neoplasia, and discovers C21orf91 as a potentially targetable hub in the control of phenotype switching.


Assuntos
Melanoma , Nevo , Neoplasias Cutâneas , Humanos , Imuno-Histoquímica , Melanoma/genética , Fenótipo , Neoplasias Cutâneas/genética
3.
Sci Rep ; 10(1): 13763, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792680

RESUMO

Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo.


Assuntos
Viabilidade Fetal/genética , Metabolismo dos Lipídeos/genética , Placenta/anormalidades , Nexinas de Classificação/genética , Ataxias Espinocerebelares/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenótipo , Fosfolipídeos/sangue , Gravidez , Trofoblastos/citologia , Peixe-Zebra
4.
Cleft Palate Craniofac J ; 57(4): 514-519, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31607140

RESUMO

We present a family with a previously undescribed abnormality of the palate and oropharynx which involved the absence of the uvula and the anterior pillar of the fauces, rudimentary posterior pillar of the fauces, and hypernasality. Eight family members over 4 generations are affected in a pattern consistent with autosomal dominant inheritance. A causal role for the FOXF2 gene has been identified and previously reported. We describe the management of the proband, which involved attempting to lengthen the palate and to retroposition the abnormally anteriorly directed velar musculature, along with speech therapy.


Assuntos
Fissura Palatina , Insuficiência Velofaríngea , Fatores de Transcrição Forkhead , Humanos , Palato Mole , Faringe , Síndrome , Úvula
5.
Hum Mol Genet ; 28(20): 3466-3474, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31504499

RESUMO

Recurrent pregnancy loss (RPL) is defined as two or more consecutive miscarriages and affects an estimated 1.5% of couples trying to conceive. RPL has been attributed to genetic, endocrine, immune and thrombophilic disorders, but many cases remain unexplained. We investigated a Bangladeshi family where the proband experienced 29 consecutive pregnancy losses with no successful pregnancies from three different marriages. Whole exome sequencing identified rare genetic variants in several candidate genes. These were further investigated in Asian and white European RPL cohorts, and in Bangladeshi controls. FKBP4, encoding the immunophilin FK506-binding protein 4, was identified as a plausible candidate, with three further novel variants identified in Asian patients. None were found in European patients or controls. In silico structural studies predicted damaging effects of the variants in the structure-function properties of the FKBP52 protein. These were located within domains reported to be involved in Hsp90 binding and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Profound effects on PPIase activity were demonstrated in transiently transfected HEK293 cells comparing wild-type and mutant FKBP4 constructs. Mice lacking FKBP4 have been previously reported as infertile through implantation failure. This study therefore strongly implicates FKBP4 as associated with fetal losses in humans, particularly in the Asian population.


Assuntos
Aborto Habitual/genética , Sequenciamento do Exoma/métodos , Proteínas de Ligação a Tacrolimo/genética , Exoma/genética , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Mutação de Sentido Incorreto/genética , Linhagem , Gravidez , Estrutura Secundária de Proteína
6.
F1000Res ; 8: 273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231513

RESUMO

Background: Lenz-Majewski syndrome (LMS) is characterized by osteosclerosis and hyperostosis of skull, vertebrae and tubular bones as well as craniofacial, dental, cutaneous, and digit abnormalities. We previously found that LMS is caused by de novo dominant missense mutations in the  PTDSS1 gene, which encodes phosphatidylserine synthase 1 (PSS1), an enzyme that catalyses the conversion of phosphatidylcholine to phosphatidylserine. The mutations causing LMS result in a gain-of-function, leading to increased enzyme activity and blocking end-product inhibition of PSS1. Methods: Here, we have used transpose-mediated transgenesis to attempt to stably express wild-type and mutant forms of human PTDSS1 ubiquitously or specifically in chondrocytes, osteoblasts or osteoclasts in zebrafish. Results: We report multiple genomic integration sites for each of 8 different transgenes. While we confirmed that the ubiquitously driven transgene constructs were functional in terms of driving gene expression following transient transfection in HeLa cells, and that all lines exhibited expression of a heart-specific cistron within the transgene, we failed to detect PTDSS1 gene expression at either the RNA or protein levels in zebrafish. All wild-type and mutant transgenic lines of zebrafish exhibited mild scoliosis with variable incomplete penetrance which was never observed in non-transgenic animals. Conclusions: Collectively the data suggest that the transgenes are silenced, that animals with integrations that escape silencing are not viable, or that other technical factors prevent transgene expression. In conclusion, the incomplete penetrance of the phenotype and the lack of a matched transgenic control model precludes further meaningful investigations of these transgenic lines.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase , Transferases de Grupos Nitrogenados/genética , Síndrome de Costela Curta e Polidactilia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , Linhagem da Célula , Células HeLa , Humanos , Transgenes
7.
Mol Syndromol ; 10(1-2): 58-73, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30976280

RESUMO

Craniosynostosis is a common craniofacial birth defect. This review focusses on the advances that have been achieved through studying the pathogenesis of craniosynostosis using mouse models. Classic methods of gene targeting which generate individual gene knockout models have successfully identified numerous genes required for normal development of the skull bones and sutures. However, the study of syndromic craniosynostosis has largely benefited from the production of knockin models that precisely mimic human mutations. These have allowed the detailed investigation of downstream events at the cellular and molecular level following otherwise unpredictable gain-of-function effects. This has greatly enhanced our understanding of the pathogenesis of this disease and has the potential to translate into improvement of the clinical management of this condition in the future.

8.
Epigenomics ; 11(2): 133-145, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30638414

RESUMO

AIM: To determine if nonsyndromic cleft lip with or without cleft palate (nsCL/P) genetic risk variants influence liability to nsCL/P through gene regulation pathways, such as those involving DNA methylation. MATERIALS & METHODS: nsCL/P genetic summary data and methylation data from four studies were used in conjunction with Mendelian randomization and joint likelihood mapping to investigate potential mediation of nsCL/P genetic variants. RESULTS & CONCLUSION: Evidence was found at VAX1 (10q25.3), LOC146880 (17q23.3) and NTN1 (17p13.1), that liability to nsCL/P and variation in DNA methylation might be driven by the same genetic variant, suggesting that genetic variation at these loci may increase liability to nsCL/P by influencing DNA methylation. Follow-up analyses using different tissues and gene expression data provided further insight into possible biological mechanisms.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Metilação de DNA , Variação Genética , Criança , Fenda Labial/patologia , Fissura Palatina/patologia , Epigênese Genética , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Análise da Randomização Mendeliana , Netrina-1/genética , Fatores de Transcrição/genética
9.
Dis Model Mech ; 11(11)2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30266836

RESUMO

FGFR2c regulates many aspects of craniofacial and skeletal development. Mutations in the FGFR2 gene are causative of multiple forms of syndromic craniosynostosis, including Crouzon syndrome. Paradoxically, mouse studies have shown that the activation (Fgfr2cC342Y; a mouse model for human Crouzon syndrome), as well as the removal (Fgfr2cnull), of the FGFR2c isoform can drive suture abolishment. This study aims to address the downstream effects of pathogenic FGFR2c signalling by studying the effects of Fgfr2c overexpression. Conditional overexpression of Fgfr2c (R26RFgfr2c;ßact) results in craniofacial hypoplasia as well as microtia and cleft palate. Contrary to Fgfr2cnull and Fgfr2cC342Y, Fgfr2c overexpression is insufficient to drive onset of craniosynostosis. Examination of the MAPK/ERK pathway in the embryonic sutures of Fgfr2cC342Y and R26RFgfr2c;ßact mice reveals that both mutants have increased pERK expression. The contrasting phenotypes between Fgfr2cC342Y and R26RFgfr2c;ßact mice prompted us to assess the impact of the Fgfr2c overexpression allele on the Crouzon mouse (Fgfr2cC342Y), in particular its effects on the coronal suture. Our results demonstrate that Fgfr2c overexpression is sufficient to partially rescue craniosynostosis through increased proliferation and reduced osteogenic activity in E18.5 Fgfr2cC342Y embryos. This study demonstrates the intricate balance of FGF signalling required for correct calvarial bone and suture morphogenesis, and that increasing the expression of the wild-type FGFR2c isoform could be a way to prevent or delay craniosynostosis progression.


Assuntos
Osso e Ossos/anormalidades , Osso e Ossos/patologia , Disostose Craniofacial/patologia , Craniossinostoses/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fosfatase Alcalina/metabolismo , Alelos , Animais , Proliferação de Células , Fissura Palatina/patologia , Microtia Congênita/genética , Microtia Congênita/patologia , Suturas Cranianas/patologia , Disostose Craniofacial/genética , Craniossinostoses/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação/genética , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/patologia
10.
Hum Mol Genet ; 27(24): 4218-4230, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30189017

RESUMO

The genetic basis of human neural tube defects (NTDs), such as anencephaly and spina bifida (SB), is complex and heterogeneous. Grainyhead-like genes represent candidates for involvement in NTDs based on the presence of SB and exencephaly in mice carrying loss-of-function alleles of Grhl2 or Grhl3. We found that reinstatement of Grhl3 expression, by bacterial artificial chromosome (BAC)-mediated transgenesis, prevents SB in Grhl3-null embryos, as in the Grhl3 hypomorphic curly tail strain. Notably, however, further increase in expression of Grhl3 causes highly penetrant SB. Grhl3 overexpression recapitulates the spinal NTD phenotype of loss-of-function embryos, although the underlying mechanism differs. However, it does not phenocopy other defects of Grhl3-null embryos such as abnormal axial curvature, cranial NTDs (exencephaly) or skin barrier defects, the latter being rescued by the Grhl3-transgene. Grhl2 and Grhl3 can form homodimers and heterodimers, suggesting a possible model in which defects arising from overexpression of Grhl3 result from sequestration of Grhl2 in heterodimers, mimicking Grhl2 loss of function. This hypothesis predicts that increased abundance of Grhl2 would have an ameliorating effect in Grhl3 overexpressing embryo. Instead, we observed a striking additive genetic interaction between Grhl2 and Grhl3 gain-of-function alleles. Severe SB arose in embryos in which both genes were expressed at moderately elevated levels that individually do not cause NTDs. Furthermore, moderate Grhl3 overexpression also interacted with the Vangl2Lp allele to cause SB, demonstrating genetic interaction with the planar cell polarity signalling pathway that is implicated in mouse and human NTDs.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Fatores de Transcrição/genética , Alelos , Animais , Animais Geneticamente Modificados/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mutação com Perda de Função , Camundongos , Defeitos do Tubo Neural/patologia , Multimerização Proteica/genética , Disrafismo Espinal/patologia
11.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29764981

RESUMO

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Éxons/genética , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Splicing de RNA/genética
12.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29776928

RESUMO

In this study, differences in the placental microbiota from term and preterm deliveries in a large pregnancy cohort in the United Kingdom were studied by using 16S-targeted amplicon sequencing. The impacts of contamination from DNA extraction, PCR reagents, and the delivery itself were also examined. A total of 400 placental samples from 256 singleton pregnancies were analyzed, and differences between spontaneous preterm-, nonspontaneous preterm-, and term-delivered placentas were investigated. DNA from recently delivered placentas was extracted, and screening for bacterial DNA was carried out by using targeted sequencing of the 16S rRNA gene on the Illumina MiSeq platform. Sequenced reads were analyzed for the presence of contaminating operational taxonomic units (OTUs) identified via sequencing of negative extraction and PCR-blank samples. Differential abundances and between-sample (beta) diversity metrics were then compared. A large proportion of the reads sequenced from the extracted placental samples mapped to OTUs that were also found for negative extractions. Striking differences in the compositions of samples were also observed, according to whether the placenta was delivered abdominally or vaginally, providing strong circumstantial evidence for delivery contamination as an important contributor to observed microbial profiles. When OTU- and genus-level abundances were compared between the groups of interest, a number of organisms were enriched in the spontaneous preterm-delivery cohort, including organisms that have been associated previously with adverse pregnancy outcomes, specifically Mycoplasma spp. and Ureaplasma spp. However, analyses of the overall community structure did not reveal convincing evidence for the existence of a reproducible "preterm placental microbiome."IMPORTANCE Preterm birth is associated with both psychological and physical disabilities and is the leading cause of infant morbidity and mortality worldwide. Infection is known to be an important cause of spontaneous preterm birth, and recent research has implicated variation in the "placental microbiome" in the risk of preterm birth. Consistent with data from previous studies, the abundances of certain clinically relevant species differed between spontaneous preterm- and nonspontaneous preterm- or term-delivered placentas. These results support the view that a proportion of spontaneous preterm births have an intrauterine-infection component. However, an additional observation from this study was that a substantial proportion of sequenced reads were contaminating reads rather than DNA from endogenous, clinically relevant species. This observation warrants caution in the interpretation of sequencing outputs from low-biomass samples such as the placenta.


Assuntos
Bactérias/classificação , Microbiota , Placenta/microbiologia , Nascimento Prematuro/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Estudos de Coortes , DNA Bacteriano/análise , Feminino , Humanos , Recém-Nascido , Microbiota/genética , Gravidez , RNA Ribossômico 16S/genética , Reino Unido , Vagina/microbiologia
13.
Hum Mol Genet ; 27(11): 1927-1940, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635513

RESUMO

Mutations in SNX14 cause the autosomal recessive cerebellar ataxia 20 (SCAR20). Mutations generally result in loss of protein although several coding region deletions have also been reported. Patient-derived fibroblasts show disrupted autophagy, but the precise function of SNX14 is unknown. The yeast homolog, Mdm1, functions in endoplasmic reticulum (ER)-lysosome/vacuole inter-organelle tethering, but functional conservation in mammals is still required. Here, we show that loss of SNX14 alters but does not block autophagic flux. In addition, we find that SNX14 is an ER-associated protein that functions in neutral lipid homeostasis and inter-organelle crosstalk. SNX14 requires its N-terminal transmembrane helices for ER localization, while the Phox homology (PX) domain is dispensable for subcellular localization. Both SNX14-mutant fibroblasts and SNX14KO HEK293 cells accumulate aberrant cytoplasmic vacuoles, suggesting defects in endolysosomal homeostasis. However, ER-late endosome/lysosome contact sites are maintained in SNX14KO cells, indicating that it is not a prerequisite for ER-endolysosomal tethering. Further investigation of SNX14- deficiency indicates general defects in neutral lipid metabolism. SNX14KO cells display distinct perinuclear accumulation of filipin in LAMP1-positive lysosomal structures indicating cholesterol accumulation. Consistent with this, SNX14KO cells display a slight but detectable decrease in cholesterol ester levels, which is exacerbated with U18666A. Finally, SNX14 associates with ER-derived lipid droplets (LD) following oleate treatment, indicating a role in ER-LD crosstalk. We therefore identify an important role for SNX14 in neutral lipid homeostasis between the ER, lysosomes and LDs that may provide an early intervention target to alleviate the clinical symptoms of SCAR20.


Assuntos
Retículo Endoplasmático/genética , Metabolismo dos Lipídeos/genética , Nexinas de Classificação/genética , Ataxias Espinocerebelares/genética , Autofagia/genética , Retículo Endoplasmático/metabolismo , Endossomos , Técnicas de Inativação de Genes , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Proteínas de Filamentos Intermediários/genética , Gotículas Lipídicas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Mutação , Ácido Oleico/farmacologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Nexinas de Classificação/deficiência , Nexinas de Classificação/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/fisiopatologia
14.
Sci Rep ; 8(1): 3325, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463853

RESUMO

Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass.


Assuntos
Osso e Ossos/patologia , Polaridade Celular , Mutação , Proteínas do Tecido Nervoso/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Disrafismo Espinal/patologia , Fatores de Transcrição/fisiologia , Animais , Osso e Ossos/metabolismo , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Defeitos do Tubo Neural/genética , Fator de Transcrição PAX3/fisiologia , Disrafismo Espinal/genética , Disrafismo Espinal/metabolismo
15.
Am J Med Genet A ; 176(3): 668-675, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29341480

RESUMO

The cutis laxa syndromes are multisystem disorders that share loose redundant inelastic and wrinkled skin as a common hallmark clinical feature. The underlying molecular defects are heterogeneous and 13 different genes have been involved until now, all of them being implicated in elastic fiber assembly. We provide here molecular and clinical characterization of three unrelated patients with a very rare phenotype associating cutis laxa, facial dysmorphism, severe growth retardation, hyperostotic skeletal dysplasia, and intellectual disability. This disorder called Lenz-Majewski syndrome (LMS) is associated with gain of function mutations in PTDSS1, encoding an enzyme involved in phospholipid biosynthesis. This report illustrates that LMS is an unequivocal cutis laxa syndrome and expands the clinical and molecular spectrum of this group of disorders. In the neonatal period, brachydactyly and facial dysmorphism are two early distinctive signs, later followed by intellectual disability and hyperostotic skeletal dysplasia with severe dwarfism allowing differentiation of this condition from other cutis laxa phenotypes. Further studies are needed to understand the link between PTDSS1 and extra cellular matrix assembly.


Assuntos
Cútis Laxa/diagnóstico , Cútis Laxa/genética , Hiperostose/diagnóstico , Hiperostose/genética , Mutação , Transferases de Grupos Nitrogenados/genética , Fenótipo , Adulto , Alelos , Criança , Pré-Escolar , Éxons , Fácies , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Radiografia
16.
J Clin Endocrinol Metab ; 103(3): 917-925, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342293

RESUMO

Context: Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective: The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. Design: A prospective cohort study of subjects with a low birth weight for gestational age. Setting: The study was conducted at an academic pediatric research institute. Patients: A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. Interventions: Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. Main Outcome Measures: The numbers of CNVs, methylation disturbances, and sequence variants. Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.


Assuntos
Peso ao Nascer/genética , Retardo do Crescimento Fetal/genética , Recém-Nascido Pequeno para a Idade Gestacional , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos , Sequenciamento do Exoma/métodos
17.
Eur J Hum Genet ; 25(10): 1126-1133, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28905882

RESUMO

Burn-McKeown syndrome (BMKS) is a rare syndrome characterized by choanal atresia, prominent ears, abnormalities of the outer third of the lower eyelid, structural cardiac abnormalities, conductive and sensorineural hearing loss, and cleft lip. Recently, causative compound heterozygous variants were identified in TXNL4A. We analyzed an individual with clinical features of BMKS and her parents by whole-genome sequencing and identified compound heterozygous variants in TXNL4A (a novel splice site variant (c.258-2A>G, (p.?)) and a 34 bp promoter deletion (hg19 chr18:g.77748581_77748614del (type 1Δ) in the proband). Subsequently, we tested a cohort of 19 individuals with (mild) features of BMKS and 17 individuals with isolated choanal atresia for causative variants in TXNL4A by dideoxy-sequence analysis. In one individual with BMKS unrelated to the first family, we identified the identical compound heterozygous variants. In an individual with isolated choanal atresia, we found homozygosity for the same type 1Δ promoter deletion, whilst in two cousins from a family with choanal atresia and other minor anomalies we found homozygosity for a different deletion within the promoter (hg19 chr18: g.77748604_77748637del (type 2Δ)). Hence, we identified causative recessive variants in TXNL4A in two individuals with BMKS as well as in three individuals (from two families) with isolated choanal atresia.


Assuntos
Atresia das Cóanas/genética , Surdez/congênito , Deleção de Genes , Cardiopatias Congênitas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Atresia das Cóanas/diagnóstico , Surdez/diagnóstico , Surdez/genética , Fácies , Feminino , Cardiopatias Congênitas/diagnóstico , Heterozigoto , Homozigoto , Humanos , Masculino , Linhagem , Regiões Promotoras Genéticas
18.
Sci Rep ; 7(1): 2441, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550290

RESUMO

Non-syndromic cleft lip and/or palate (NSCLP) is a common congenital malformation with a multifactorial model of inheritance. Although several at-risk alleles have been identified, they do not completely explain the high heritability. We postulate that epigenetic factors as DNA methylation might contribute to this missing heritability. Using a Methylome-wide association study in a Brazilian cohort (67 NSCLP, 59 controls), we found 578 methylation variable positions (MVPs) that were significantly associated with NSCLP. MVPs were enriched in regulatory and active regions of the genome and in pathways already implicated in craniofacial development. In an independent UK cohort (171 NSCLP, 177 controls), we replicated 4 out of 11 tested MVPs. We demonstrated a significant positive correlation between blood and lip tissue DNA methylation, indicating blood as a suitable tissue for NSCLP methylation studies. Next, we quantified CDH1 promoter methylation levels in CDH1 mutation-positive families, including penetrants, non-penetrants or non-carriers for NSCLP. We found methylation levels to be significantly higher in the penetrant individuals. Taken together, our results demonstrated the association of methylation at specific genomic locations as contributing factors to both non-familial and familial NSCLP and altered DNA methylation may be a second hit contributing to penetrance.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Metilação de DNA , Penetrância , Antígenos CD/genética , Brasil , Caderinas/genética , Criança , Pré-Escolar , Fenda Labial/patologia , Fissura Palatina/patologia , Estudos de Coortes , Ilhas de CpG/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Regiões Promotoras Genéticas/genética
19.
Adv Exp Med Biol ; 963: 323-335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197921

RESUMO

Craniofacial development requires a complex series of coordinated and finely tuned events to take place, during a relatively short time frame. These events are set in motion by switching on and off transcriptional cascades that involve the use of numerous signalling pathways and a multitude of factors that act at the site of gene transcription. It is now well known that amidst the subtlety of this process lies the intricate world of protein modification, and the posttranslational addition of the small ubiquitin -like modifier, SUMO, is an example that has been implicated in this process. Many proteins that are required for formation of various structures in the embryonic head and face adapt specific functions with SUMO modification. Interestingly, the main clinical phenotype reported for a disruption of the SUMO1 locus is the common birth defect cleft lip and palate. In this chapter therefore, we discuss the role of SUMO1 in craniofacial development, with emphasis on orofacial clefts. We suggest that these defects can be a sensitive indication of down regulated SUMO modification at a critical stage during embryogenesis. As well as specific mutations affecting the ability of particular proteins to be sumoylated, non-genetic events may have the effect of down-regulating the SUMO pathway to give the same result. Enzymes regulating the SUMO pathway may become important therapeutic targets in the preventative and treatment therapies for craniofacial defects in the future.


Assuntos
Anormalidades Craniofaciais/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Fenda Labial/genética , Fenda Labial/metabolismo , Fenda Labial/fisiopatologia , Fissura Palatina/genética , Fissura Palatina/metabolismo , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/fisiopatologia , Predisposição Genética para Doença , Humanos , Fenótipo , Fatores de Risco , Proteína SUMO-1 , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
20.
PLoS Genet ; 13(1): e1006470, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28081210

RESUMO

Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development.


Assuntos
Moléculas de Adesão Celular/genética , Fenda Labial/genética , Fissura Palatina/genética , Coração Triatriado/genética , Hialuronoglucosaminidase/genética , Mutação , Adolescente , Animais , Criança , Pré-Escolar , Fenda Labial/patologia , Fissura Palatina/patologia , Coração Triatriado/patologia , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Penetrância , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA