Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 1243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275254

RESUMO

Microbially enhanced oil recovery (MEOR) of heavy oil and bitumen is challenging because light hydrocarbons, which can feed resident microbial communities are present in low concentrations, if at all. We have recently shown that increasing the toluene concentration of heavy oil by aqueous injection followed by injection of nitrate boosts the activity of toluene-oxidizing nitrate-reducing bacteria in heavy oil-containing sand pack columns, giving production of residual oil in place (ROIP). In the current work we found that ethylbenzene is as effective as toluene. Microbial community analyses indicated Thauera and Pseudomonas to be main components of nitrate-containing batch and continuous cultures, regardless whether ethylbenzene or toluene was used as the electron donor. Biomass from batch cultures grown with heavy oil amended with ethylbenzene or toluene and nitrate or biomass from continuous cultures grown on ethylbenzene or toluene and nitrate had similar MEOR activity. Increasing the concentration of injected biomass from continuous cultures increased the fraction of ROIP recovered both in the absence and in the presence of nitrate. Nitrate increased the fraction of ROIP recovered by about 2-fold by increasing the concentration of biomass in the columns. Emulsification of oil by surface-adhering biomass and blocking of aqueous flow channels by oil emulsion droplets are proposed as a possible mechanism of hydrocarbon- and nitrate-mediated MEOR. Pure isolates Thauera sp. NS1 and Pseudomonas sp. NS2, which used both ethylbenzene and toluene, were obtained but did not offer improved MEOR compared to the use of batch and continuous cultures.

2.
Environ Sci Technol ; 49(20): 12594-601, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26406569

RESUMO

Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.


Assuntos
Reatores Biológicos , Fraturamento Hidráulico/métodos , Hidrocarbonetos , Nitratos , Petróleo , Bactérias , Reatores Biológicos/microbiologia , Petróleo/microbiologia , Tolueno , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA