Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 133(5)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31722979

RESUMO

Cysteinyl-leukotrienes (cys-LTs) have well-characterized physiopathological roles in the development of inflammatory diseases. We have previously found that protein tyrosine phosphatase ε (PTPε) is a signaling partner of CysLT1R, a high affinity receptor for leukotriene D4 (LTD4). There are two major isoforms of PTPε, receptor-like (RPTPε) and cytoplasmic (cyt-)PTPε, both of which are encoded by the PTPRE gene but from different promoters. In most cells, their expression is mutually exclusive, except in human primary monocytes, which express both isoforms. Here, we show differential PTPε isoform expression patterns between monocytes, M1 and M2 human monocyte-derived macrophages (hMDMs), with the expression of glycosylated forms of RPTPε predominantly in M2-polarized hMDMs. Using PTPε-specific siRNAs and expression of RPTPε and cyt-PTPε, we found that RPTPε is involved in monocyte adhesion and migration of M2-polarized hMDMs in response to LTD4 Altered organization of podosomes and higher phosphorylation of the inhibitory Y-722 residue of ROCK2 was also found in PTPε-siRNA-transfected cells. In conclusion, we show that differentiation and polarization of monocytes into M2-polarized hMDMs modulates the expression of PTPε isoforms and RPTPε is involved in podosome distribution, ROCK2 activation and migration in response to LTD4.


Assuntos
Podossomos , Humanos , Macrófagos/metabolismo , Fosforilação , Podossomos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Quinases Associadas a rho
2.
Cell Biosci ; 9: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31289638

RESUMO

BACKGROUND: An underlying state of inflammation is thought to be an important cause of cardiovascular disease. Among cells involved in the early steps of atherosclerosis, monocyte-derived dendritic cells (Mo-DCs) respond to inflammatory stimuli, including platelet-activating factor (PAF), by the induction of various cytokines, such as interleukin 6 (IL-6). PAF is a potent phospholipid mediator involved in both the onset and progression of atherosclerosis. It mediates its effects by binding to its cognate G-protein coupled receptor, PAFR. Activation of PAFR-induced signaling pathways is tightly coordinated to ensure specific cell responses. RESULTS: Here, we report that PAF stimulated the phosphatase activity of both the 45 and 48 kDa isoforms of the protein tyrosine phosphatase non-receptor type 2 (PTPN2). However, we found that only the 48 kDa PTPN2 isoform has a role in PAFR-induced signal transduction, leading to activation of the IL-6 promoter. In luciferase reporter assays, expression of the 48 kDa, but not the 45 kDa, PTPN2 isoform increased human IL-6 (hIL-6) promoter activity by 40% after PAF stimulation of HEK-293 cells, stably transfected with PAFR (HEK-PAFR). Our results suggest that the differential localization of the PTPN2 isoforms and the differences in PAF-induced phosphatase activation may contribute to the divergent modulation of PAF-induced IL-6 promoter activation. The involvement of PTPN2 in PAF-induced IL-6 expression was confirmed in immature Mo-DCs (iMo-DCs), using siRNAs targeting the two isoforms of PTPN2, where siRNAs against the 48 kDa PTPN2 significantly inhibited PAF-stimulated IL-6 mRNA expression. Pharmacological inhibition of several signaling pathways suggested a role for PTPN2 in early signaling events. Results obtained by Western blot confirmed that PTPN2 increased the activation of the PI3K/Akt pathway via the modulation of protein kinase D (PKD) activity. WT PKD expression counteracted the effect of PTPN2 on PAF-induced IL-6 promoter transactivation and phosphorylation of Akt. Using siRNAs targeting the individual isoforms of PTPN2, we confirmed that these pathways were also active in iMo-DCs. CONCLUSION: Taken together, our data suggest that PTPN2, in an isoform-specific manner, could be involved in the positive regulation of PI3K/Akt activation, via the modulation of PKD activity, allowing for the maximal induction of PAF-stimulated IL-6 mRNA expression.

3.
Methods Mol Biol ; 1947: 241-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969420

RESUMO

Given the increasing amount of data showing the importance of protein tyrosine phosphatases (PTPs) in G protein-coupled receptor (GPCR) signaling pathways, the modulation of this enzyme family by that type of receptor can become an important experimental question. Here, we describe two different methods, an in-gel and a colorimetric PTP assay, to evaluate the modulation of PTP activity after stimulation with GPCR agonists.


Assuntos
Colorimetria/métodos , Células Dendríticas/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Ativação Enzimática , Humanos , Transdução de Sinais
4.
J Pharmacol Exp Ther ; 369(2): 270-281, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30867226

RESUMO

Phosphorylation on tyrosine residues is recognized as an important mechanism for connecting extracellular stimuli to cellular events and defines a variety of physiologic responses downstream of G protein-coupled receptor (GPCR) activation. To date, few protein tyrosine phosphatases (PTPs) have been shown to associate with GPCRs, and little is known about their role in GPCR signaling. To discover potential cysteinyl-leukotriene receptor (CysLT1R)-interacting proteins, we identified protein tyrosine phosphatase ε (PTPε) in a yeast two-hybrid assay. Since both proteins are closely linked to asthma, we further investigated their association. Using a human embryonic kidney cell line 293 (HEK-293) cell line stably transfected with the receptor (HEK-LT1), as well as human primary monocytes, we found that PTPε colocalized with CysLT1R in both resting and leukotriene D4 (LTD4)-stimulated cells. Cotransfection of HEK-LT1 with PTPε had no effect on CysLT1R expression or LTD4-induced internalization, but it inhibited LTD4-induced CXC chemokine 8 (CXCL8) promoter transactivation, protein expression, and secretion. Moreover, reduced phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), but not of p38 or c-Jun-N-terminal kinase 1 or 2 mitogen-activated protein kinases (MAPKs), was observed upon LTD4 stimulation of HEK-LT1 coexpressing cytosolic (cyt-) PTPε, but not receptor (R) PTPε The increased interaction of cyt-PTPε and ERK1/2 after LTD4 stimulation was shown by coimmunoprecipitation. In addition, enhanced ERK1/2 phosphorylation and CXCL8 secretion were found in LTD4-stimulated human monocytes transfected with PTPε-specific siRNAs, adding support to a regulatory/inhibitory role of PTPε in CysLT1R signaling. Given that the prevalence of severe asthma is increasing, the identification of PTPε as a new potential therapeutic target may be of interest.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/metabolismo , Leucotrieno D4/farmacologia , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Isoenzimas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores de Leucotrienos/metabolismo
5.
Cell Commun Signal ; 17(1): 21, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832675

RESUMO

BACKGROUND: Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. METHODS: We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. RESULTS: Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. CONCLUSION: The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation.


Assuntos
Interleucina-8/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Interleucina-8/genética , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
6.
J Immunol ; 201(9): 2787-2798, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242072

RESUMO

IL-33 and cysteinyl leukotrienes (cysLTs) are key components of asthma pathogenesis, and both contribute to the initiation and maintenance of the type 2 inflammatory environment. However, little is known about the potential interactions between the two mediators. In this work, we aimed at studying the regulation of expression of the cysLT receptors CysLT1 and CysLT2 by IL-33 in human PBLs. Our results show that the IL-33/ST2L axis increases CysLT1 but not CysLT2 expression in a concentration- and time-dependent manner in PBLs. IL-33-induced CysLT1 upregulation was observed at the protein but not at the mRNA level and was accompanied by an increase in LTD4-induced calcium mobilization and migration of CD4+ T lymphocytes. We also show that purified naive CD4+ T lymphocytes expressed ST2L and responded to IL-33 in the absence of Ag or TCR stimulation, suggesting a mechanism independent of Ag presentation. These results contribute to expanding our knowledge in the field of IL-33 by proposing a new mode of action of the cytokine on T cells and by extending its role to the regulation of naive T cell trafficking, therefore reinforcing its interest as a potential therapeutic target for the treatment of asthma.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Quimiotaxia de Leucócito/imunologia , Interleucina-33/metabolismo , Receptores de Leucotrienos/biossíntese , Linfócitos T CD4-Positivos/imunologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/imunologia , Receptores de Leucotrienos/imunologia , Regulação para Cima
7.
PLoS One ; 12(7): e0180336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686728

RESUMO

Atherosclerosis is a pro-inflammatory condition underlying many cardiovascular diseases. Platelet-activating factor (PAF) and interleukin 6 (IL-6) are actively involved in the onset and progression of atherosclerotic plaques. The involvement of monocyte-derived macrophages is well characterized in the installation of inflammatory conditions in the plaque, but less is known about the contribution of monocyte-derived dendritic cells (Mo-DCs). In the same way, the involvement of calcium, phospholipase C and A2 in PAF-induced IL-6 production, in different cells types, has been shown; however, the importance of the Jak/STAT pathway and its regulation by protein-tyrosine phosphatases in this response have not been addressed. In this study, we report that PAF stimulates PTP1B activity via Jak2, thereby modulating PAF-induced IL-6 production. Using HEK 293 cells stably transfected with the PAF receptor in order to discriminate the pathway components, our results suggest that Jak2 modulates PAF-induced IL-6 production via both positive and negative pathways. Jak2 kinase activity was necessary for maximal transactivation of the IL-6 promoter, as seen by luciferase assays, whereas the same kinase also downregulated this promoter transactivation through the activation of a calcium/calpain/PTP1B pathway. The same pathways were operational in monocyte-derived dendritic cells, since PAF-induced PTP1B activation negatively regulated PAF-induced IL-6 mRNA production and, in addition, Jak2 activated calpain, one of the components involved in PAF-induced PTP1B activation. Results obtained in this study indicate that Jak2 activation is important for maximal IL-6 promoter transactivation by PAF and that PTP1B is involved in the negative regulation of this transactivation. However, PTP1B does not directly regulate Jak2 activation, but rather Jak2 regulates PAF-induced PTP1B activation.


Assuntos
Calpaína/genética , Células Dendríticas/metabolismo , Janus Quinase 2/genética , Glicoproteínas da Membrana de Plaquetas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptores Acoplados a Proteínas G/genética , Cálcio/metabolismo , Calpaína/metabolismo , Células Dendríticas/citologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Luciferases/genética , Luciferases/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
8.
J Autoimmun ; 76: 63-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634616

RESUMO

Defects in dendritic cells (DCs) development and function lead to autoimmune disorders. Autoimmune diabetes in humans and NOD mice results from a breakdown of self-tolerance, ending in T cell-mediated ß-cell destruction. DCs dysfunction in NOD mice results in part from a defect in the JAK-STAT5 signaling pathway associated with the idd4 susceptibility locus. The involvement of Stat5b in DCs tolerogenic functions remains unknown. We have generated transgenic mice (NOD.CD11cStat5b-CA) expressing a constitutively active form of the Stat5b gene (Stat5b-CA) under control of CD11c promoter. All NOD.CD11cStat5b-CA mice were protected against diabetes. Protection was associated with an increased in the pool and suppressive function of Tregs, a promotion of Th2 and Tc2 immune response and a decreased percentage of CD8+ T cells. Splenic DCs of NOD.CD11cStat5b-CA mice acquired a mature phenotype, promoted and induced better conversion of CD4+CD25-Foxp3- T cells into Tregs (CD4+CD25+Foxp3+ T cells) than DCs of NOD mice. Stat5b-CA.DC-educated CD4+CD25- T cells delayed diabetes onset whereas Stat5b-CA.DC-educated Tregs blocked ongoing diabetes in 8-10 weeks old NOD recipient mice. Importantly, injection of Stat5b.CA.DC to 8-10-week old NOD mice halted diabetes progression and educated their splenocytes to loose their diabetogenic potential when transferred to NOD.SCID mice. Our work is the first to report that an active form of Stat5b restored DCs tolerogenic functions that re-educated Tregs to re-establish and to sustain long-term protective immune response against diabetes in NOD mice.


Assuntos
Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Fator de Transcrição STAT5/metabolismo , Tolerância a Antígenos Próprios/imunologia , Transdução de Sinais , Animais , Autoantígenos/imunologia , Autoimunidade , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Progressão da Doença , Imunofenotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Front Pharmacol ; 7: 299, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990118

RESUMO

Genetic variants associated with asthma pathogenesis and altered response to drug therapy are discussed. Many studies implicate polymorphisms in genes encoding the enzymes responsible for leukotriene synthesis and intracellular signaling through activation of seven transmembrane domain receptors, such as the cysteinyl leukotriene 1 (CYSLTR1) and 2 (CYSLTR2) receptors. The leukotrienes are polyunsaturated lipoxygenated eicosatetraenoic acids that exhibit a wide range of pharmacological and physiological actions. Of the three enzymes involved in the formation of the leukotrienes, arachidonate 5 lipoxygenase 5 (ALOX5), leukotriene C4 synthase (LTC4S), and leukotriene hydrolase (LTA4H) are all polymorphic. These polymorphisms often result in variable production of the CysLTs (LTC4, LTD4, and LTE4) and LTB4. Variable number tandem repeat sequences located in the Sp1-binding motif within the promotor region of the ALOX5 gene are associated with leukotriene burden and bronchoconstriction independent of asthma risk. A 444A > C SNP polymorphism in the LTC4S gene, encoding an enzyme required for the formation of a glutathione adduct at the C-6 position of the arachidonic acid backbone, is associated with severe asthma and altered response to the CYSLTR1 receptor antagonist zafirlukast. Genetic variability in the CysLT pathway may contribute additively or synergistically to altered drug responses. The 601 A > G variant of the CYSLTR2 gene, encoding the Met201Val CYSLTR2 receptor variant, is associated with atopic asthma in the general European population, where it is present at a frequency of ∼2.6%. The variant was originally found in the founder population of Tristan da Cunha, a remote island in the South Atlantic, in which the prevalence of atopy is approximately 45% and the prevalence of asthma is 36%. In vitro work showed that the atopy-associated Met201Val variant was inactivating with respect to ligand binding, Ca2+ flux and inositol phosphate generation. In addition, the CYSLTR1 gene, located at Xq13-21.1, has been associated with atopic asthma. The activating Gly300Ser CYSLTR1 variant is discussed. In addition to genetic loci, risk for asthma may be influenced by environmental factors such as smoking. The contribution of CysLT pathway gene sequence variants to atopic asthma is discussed in the context of other genes and environmental influences known to influence asthma.

11.
PLoS One ; 11(9): e0162995, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27684068

RESUMO

OBJECTIVE: IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. METHODS: Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. RESULTS: Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. CONCLUSIONS: Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26869085

RESUMO

Cysteinyl-leukotrienes are pro-inflammatory lipid mediators, involved in allergic asthma, that bind the G-protein-coupled receptors CysLT1, CysLT2 and GPR99. A polymorphism in one of these receptors, CysLT1-G300S was strongly associated with atopy, whereas the CysLT1-I206S polymorphism was not. In the present work, our aim was to characterize these two variants by studying their cellular signalling. Cell surface expression of mutant receptors in transfected HEK-293 cells was comparable to that of the wild-type receptor. Compared to CysLT1-WT, production of inositol phosphates as well as IL-8 and IL-13 promoter transactivation in response to either LTD4 or LTC4 was significantly increased in CysLT1-G300S-transfected cells. Moreover, LTD4-induced phosphorylation of the signalling effector Erk, but not p38, p65 or c-Jun was higher in CysLT1-G300S-transfected cells. On the other hand, the variant CysLT1-I206S did not show a significant difference in its signal transduction compared to the wild-type receptor. Taken together, our results indicate that the variant CysLT1-G300S can induce a greater signal than the CysLT1-WT receptor, a feature that may be relevant to its association with atopy.


Assuntos
Polimorfismo Genético/genética , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Western Blotting , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Mediators Inflamm ; 2015: 389849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696753

RESUMO

Accumulating evidence indicates that leukotriene B4 (LTB4) via its receptors BLT1 and/or BLT2 (BLTRs) could have an important role in regulating infection, tumour progression, inflammation, and autoimmune diseases. In the present study, we showed that LTB4 not only augments cytotoxicity by NK cells but also induces their migration. We found that approximately 30% of fresh NK cells express BLT1, 36% express BLT2, and 15% coexpress both receptors. The use of selective BLTR antagonists indicated that BLT1 was involved in both LTB4-induced migration and cytotoxicity, whereas BLT2 was involved exclusively in NK cell migration, but only in response to higher concentrations of LTB4. BLT1 and BLT2 expression increased after activation of NK cells with IL-2 and IL-15. These changes of BLTR expression by cytokines were reflected in enhanced NK cell responses to LTB4. Our findings suggest that BLT1 and BLT2 play differential roles in LTB4-induced modulation of NK cell activity.


Assuntos
Movimento Celular/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Leucotrieno B4/farmacologia , Receptores do Leucotrieno B4/fisiologia , Células Cultivadas , Humanos , Interleucina-15/farmacologia , Interleucina-2/farmacologia , Células Matadoras Naturais/imunologia , RNA Mensageiro/análise , Receptores do Leucotrieno B4/análise , Receptores do Leucotrieno B4/genética
14.
J Immunol Res ; 2015: 384780, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918735

RESUMO

In order to determine the potential for allergen to modulate T cell expression of the CysLT1 receptor and responsiveness to leukotrienes, peripheral blood mononuclear cells from house dust mite-allergic or nonallergic individuals were incubated with D. pteronyssinus allergen (Der p). Baseline CysLT1 expression was similar in both groups of donors, but Der p significantly enhanced CysLT1 expression in CD4(+) and CD8(+) T cells of only allergic individuals and induced enhanced responsiveness of CD4(+) T cells to LTD4 in terms of calcium mobilisation. This effect was prevented by the CysLT1 antagonist MK571. Der p also induced IL-4 and IL-10 production, and neutralizing antibody to IL-4 prevented both the enhanced CysLT1 expression and the enhanced responsiveness of T cells to LTD4 induced by Der p. In allergic individuals, Der p also induced T cell proliferation and a Th2-biased phenotype. Our data suggest that, in allergen-sensitized individuals, exposure to allergen can enhance T cell expression of CysLT1 receptors through a mechanism involving IL-4 production. This, in turn, would induce CD4(+) T cell responsiveness to cysteinyl-leukotrienes and Th2 cell activation.


Assuntos
Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Cisteína Endopeptidases/imunologia , Regulação da Expressão Gênica , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Pyroglyphidae/imunologia , Receptores de Leucotrienos/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Células Cultivadas , Humanos , Hipersensibilidade/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptores de Leucotrienos/metabolismo
15.
J Cell Biol ; 204(3): 377-93, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24493589

RESUMO

Export of newly synthesized G protein-coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1-Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1-ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.


Assuntos
Espaço Intracelular/enzimologia , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/enzimologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas Mutantes/metabolismo , Transporte Proteico , Rede trans-Golgi/metabolismo
16.
J Cell Physiol ; 228(1): 120-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22566162

RESUMO

With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic ß cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption.


Assuntos
Enterócitos/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Humanos , Proteína Quinase C/metabolismo , Proteína Quinase C-delta/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Ratos , Receptores Purinérgicos P2X7/genética
17.
Biochem J ; 449(2): 353-64, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23098229

RESUMO

Mature T-lymphocytes undergo spontaneous apoptosis in the biobreeding diabetes-prone strain of rats due to the loss of the functional GIMAP5 (GTPase of the immune-associated nucleotide-binding protein 5) protein. The mechanisms underlying the pro-survival function of GIMAP5 in T-cells have not yet been elucidated. We have previously shown that GIMAP5 deficiency in T-cells impairs Ca2+ entry via plasma membrane channels following exposure to thapsigargin or stimulation of the T-cell antigen receptor. In the present study we report that this reduced Ca2+ influx in GIMAP5-deficient T-cells is associated with the inability of their mitochondria to sequester Ca2+ following capacitative entry, which is required for sustained Ca2+ influx via the plasma membrane channels. Consistent with a role for GIMAP5 in regulating mitochondrial Ca2+, overexpression of GIMAP5 in HEK (human embryonic kidney)-293 cells resulted in increased Ca2+ accumulation within the mitochondria. Disruption of microtubules, but not the actin cytoskeleton, abrogated mitochondrial Ca2+ sequestration in primary rat T-cells, whereas both microtubules and actin cytoskeleton were needed for the GIMAP5-mediated increase in mitochondrial Ca2+ in HEK-293 cells. Moreover, GIMAP5 showed partial colocalization with tubulin in HEK-293 cells. On the basis of these findings, we propose that the pro-survival function of GIMAP5 in T-lymphocytes may be linked to its requirement to facilitate microtubule-dependent mitochondrial buffering of Ca2+ following capacitative entry.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/metabolismo , Linfócitos T/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Transporte de Íons , Microscopia Confocal , Mutação , Ratos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Tubulina (Proteína)/metabolismo
18.
J Cell Commun Signal ; 6(4): 205-16, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22878922

RESUMO

Platelet-activating factor (PAF) is a potent phospholipid mediator involved in specific disease states such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G protein-coupled receptor (GPCR) family. Following PAF stimulation, cells become rapidly desensitized; this refractory state can be maintained for hours and is dependent on PAFR phosphorylation, internalization and trafficking. EBP50/NHERF1 has been found to interact with a variety of proteins and these interactions are involved in a growing range of functions including the assembly of signalling complexes, receptor recycling and transport of proteins to the cell surface. Crucial roles of EBP50 in GPCR physiology include its involvement in internalization, recycling, and downregulation. We were interested in identifying the role of EBP50 in PAFR trafficking. Our results showed that EBP50 binds the PAFR in its basal state, while stimulation decreased the ratio of interaction between the two proteins. We also demonstrated that EBP50 could bind PAFR via its PDZ 2 domain. In addition, we studied the role of EBP50 in various functions of the PAFR such as PAF-induced inositol phosphate accumulation and receptor internalization: EBP50 decreased the WT PAFR response and rescued the function of internalization-deficient mutant receptors, as previously described for the arrestins and the GRKs. These results suggest new roles for EBP50, some of which could help understanding the complex formation after receptor activation.

19.
Inflamm Bowel Dis ; 18(8): 1456-69, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22095787

RESUMO

BACKGROUND: Inflammatory bowel diseases are characterized by the presence of CXCL8 at the site of lesions resulting in neutrophil recruitment and loss of tissue functions. We report that P2Y(6) receptor activation stimulates CXCL8 expression and release by intestinal epithelial cells (IECs). In this context, we investigated if uridine 5'-diphosphate (UDP) enemas stimulate neutrophil recruitment to the mucosa of mice suffering from colitis-like disease and we characterized the signaling events linking P2Y(6) to CXCL8 expression in IEC. METHODS: Neutrophil recruitment was monitored by immunofluorescence and FACS analysis. Expression of Cxcl1, a mouse functional homolog of CXCL8, was determined by quantitative real-time polymerase chain reaction (qPCR). Pharmacological inhibitors and interfering RNAs were used to characterize the signaling pathway. The outcomes of these treatments on protein phosphorylation and on CXCL8 expression were characterized by western blots, qPCR, luciferase, and chromatin immunoprecipitation (ChIP) assays. RESULTS: Mutation of the AP-1 site in the CXCL8 core promoter abolished the UDP-stimulating effect. The c-fos/c-jun dimer was identified as the AP-1 complex regulating CXCL8 in response to UDP stimulation. Regulation of CXCL8 expression by P2Y(6) required PKCδ activation upstream of the signaling pathway composed of MEK1/2-ERK1/2 and c-fos. UDP administration to mice suffering from colitis-like disease increased the number of neutrophil infiltrating the mucosa, correlating with Cxcl1 increased expression in IEC and the severity of inflammation. CONCLUSIONS: This study not only describes the P2Y(6) signaling mechanism regulating CXCL8 expression in IEC, but it also illustrates the potential of targeting P2Y(6) to reduce intestinal inflammation.


Assuntos
Células Epiteliais/imunologia , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-8/genética , Mucosa Intestinal/imunologia , Infiltração de Neutrófilos , Receptores Purinérgicos P2/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Western Blotting , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Imunoprecipitação da Cromatina , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Citometria de Fluxo , Imunofluorescência , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Luciferases/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Transcrição AP-1/genética
20.
Mediators Inflamm ; 2011: 913802, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22013287

RESUMO

Th17 cells have been implicated in a number of inflammatory and autoimmune diseases. The phospholipid mediator platelet-activating factor (PAF) is found in increased concentrations in inflammatory lesions and has been shown to induce IL-6 production. We investigated whether PAF could affect the development of Th17 cells. Picomolar concentrations of PAF induced IL-23, IL-6, and IL-1ß expression in monocyte-derived Langerhans cells (LCs) and in keratinocytes. Moreover, when LC were pretreated with PAF and then cocultured with anti-CD3- and anti-CD28-activated T cells, the latter developed a Th17 phenotype, with a significant increase in the expression of the transcriptional regulator RORγt and enhanced expression of IL-17, IL-21, and IL-22. PAF-induced Th17 development was prevented by the PAF receptor antagonist WEB2086 and by neutralizing antibodies to IL-23 and IL-6R. This may constitute a previously unknown stimulus for the development and persistence of inflammatory processes that could be amenable to pharmacologic intervention.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator de Ativação de Plaquetas/farmacologia , Células Th17/citologia , Células Th17/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Citometria de Fluxo , Humanos , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA