RESUMO
PURPOSE OF REVIEW: Multiple system atrophy (MSA) is a rapidly progressive synucleinopathy characterized by autonomic failure, parkinsonism, and cerebellar ataxia. Here, we provide an update on α-synuclein's role in MSA pathophysiology and review the new Movement Disorders Society (MDS) diagnostic criteria and the utility of α-synuclein-based biomarkers. We also highlight ongoing efforts toward clinical trial readiness and review potential disease-modifying therapies undergoing clinical trials. RECENT FINDINGS: A role of urinary tract infections in triggering α-synuclein aggregation and contribution of genes implicated in oligodendroglial development have been suggested in the MSA pathophysiology. The clinically probable MSA category of the new diagnostic criteria shows improved accuracy in early disease stages. Predictors of phenoconversion from pure autonomic failure to MSA are now better defined. Alpha-synuclein strains in CSF and serum, phosphorylated α-synuclein deposits in the skin, and brain α-synuclein pathology visualized using PET ligand [18F]ACI-12589 are emerging as valuable diagnostic tools. Clinical trials in MSA investigate drugs targeting α-synuclein aggregation or preventing α-synuclein expression, along with stem cell and gene therapies to halt disease progression. SUMMARY: New MSA diagnostic criteria and α-synuclein-based biomarkers may enhance diagnostic accuracy while promising therapies are in development to address disease progression.
Assuntos
Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/terapia , Humanos , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismoRESUMO
Background Whether connectome mapping of structural and functional connectivity across the brain could be used to predict patterns of atrophy progression in patients with mild Parkinson disease (PD) has not been well studied. Purpose To assess the structural and functional connectivity of brain regions in healthy controls and its relationship with the spread of gray matter (GM) atrophy in patients with mild PD. Materials and Methods This prospective study included participants with mild PD and controls recruited from a single center between January 2012 and December 2023. Participants with PD underwent three-dimensional T1-weighted brain MRI, and the extent of regional GM atrophy was determined at baseline and every year for 3 years. The structural and functional brain connectome was constructed using diffusion tensor imaging and resting-state functional MRI in healthy controls. Disease exposure (DE) indexes-indexes of the pathology of each brain region-were defined as a function of the structural or functional connectivity of all the connected regions in the healthy connectome and the severity of atrophy of the connected regions in participants with PD. Partial correlations were tested between structural and functional DE indexes of each GM region at 1- or 2-year follow-up and atrophy progression at 2- or 3-year follow-up. Prediction models of atrophy at 2- or 3-year follow-up were constructed using exhaustive feature selection. Results A total of 86 participants with mild PD (mean age at MRI, 60 years ± 8 [SD]; 48 male) and 60 healthy controls (mean age at MRI, 62 years ± 9; 31 female) were included. DE indexes at 1 and 2 years were correlated with atrophy at 2 and 3 years (r range, 0.22-0.33; P value range, .002-.04). Models including DE indexes predicted GM atrophy accumulation over 3 years in the right caudate nucleus and some frontal, parietal, and temporal brain regions (R2 range, 0.40-0.61; all P < .001). Conclusion The structural and functional organization of the brain connectome plays a role in atrophy progression in the early stages of PD. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Yamada in this issue.
Assuntos
Atrofia , Encéfalo , Conectoma , Progressão da Doença , Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Masculino , Feminino , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/patologia , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso , Conectoma/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imagem de Tensor de Difusão/métodosRESUMO
BACKGROUND: A 4-item score based on ≥2 features out of orthostatic hypotension, overactive bladder, urinary retention and postural instability was previously shown to early distinguish the Parkinson-variant of multiple system atrophy (MSA-P) from Parkinson's disease (PD) with 78% sensitivity and 86% specificity. OBJECTIVES: To replicate and improve the 4-item MSA-P score. METHODS: We retrospectively studied 161 patients with early parkinsonism [ie, ≤2 years disease duration or no postural instability, aged 64 (57; 68) years, 44% females] and a diagnosis of clinically established MSA-P (n = 38) or PD (n = 123) after ≥24 months follow-up. RESULTS: The 4-item MSA-P score had a 92% sensitivity and 78% specificity for a final MSA-P diagnosis. By including dopaminergic responsiveness and postural deformities into a 6-item score (range: 0-6), reaching ≥3 points at early disease identified MSA-P patients with 89% sensitivity and 98% specificity. CONCLUSIONS: The 6-item MSA-P score is a cost-effective tool to pinpoint individuals with early-stage MSA-P.
RESUMO
BACKGROUND: Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10). METHODS: Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients. RESULTS: Most patients (>80%) had loss-of-function (LOF) variants. The most common variant was c.1150_1151del, found in all 29 patients of Romani ancestry, who had a 14-year earlier mean age at onset than patients homozygous for other LOF variants. We identified previously undescribed clinical features of ATX-ANO10 (e.g., facial muscle involvement and strabismus) suggesting the involvement of brainstem pathology, and we propose a diagnostic algorithm that may aid clinical ATX-ANO10 diagnosis. CONCLUSIONS: The early disease onset in patients with c.1150_1151del may indicate the existence of genetic/environmental disease-modifying factors in the Romani population. Our findings will inform patient counseling and may improve our understanding of the disease mechanism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Anoctaminas , Ataxias Espinocerebelares , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Idade de Início , Anoctaminas/genética , Estudos de Associação Genética , Ataxias Espinocerebelares/genética , IdosoRESUMO
BACKGROUND: In older age, walking ability gradually decreases due to factors including impaired balance, reduced muscle strength, and impaired vision and proprioception. Further, cognitive functions play a key role during walking and gradually decline with age. There is greater variability in gait parameters when the demands during walking increase, in dual- and multiple-task situations. The aim of this study was to analyze gait parameters while performing a demanding cognitive and motor dual task in three different age-related healthy elderly subject groups. METHOD: A total of 132 healthy individuals (54 males, 78 females) were divided into three groups-55 to 65, 66 to 75, and 76 to 85 years. The subjects performed a basic walking task, dual motor task, dual mental task, and combined motor and mental task while walking. The gait parameters cycle time, stride length, swing time, and double support time were noted, as well as the variability of those parameters. RESULTS: Cycle time was longer and stride length was shorter in the >76-year-old group than in the 51-65-year-old group in all test conditions. A comparison of all three groups did not show a significant difference in swing time, while double support time was increased in the same group. CONCLUSIONS: Changes are observed when gait is performed simultaneously with an additional motor or cognitive task. Early detection of gait disorders can help identify elderly people at increased risk of falls. Employing a dual-task paradigm during gait assessment in healthy elderly subjects may help identify cognitive impairment early in the course of the disturbance.
RESUMO
BACKGROUND: The hypothesis that the effectiveness of deep brain stimulation (DBS) in Parkinson's disease (PD) would be related to connectivity dysfunctions between the site of stimulation and other brain regions is growing. OBJECTIVE: To investigate how the subthalamic nucleus (STN), the most frequently used DBS target for PD, is functionally linked to other brain regions in PD patients according to DBS eligibility. METHODS: Clinical data and resting-state functional MRI were acquired from 60 PD patients and 60 age- and sex-matched healthy subjects within an ongoing longitudinal project. PD patients were divided into 19 patients eligible for DBS and 41 non-candidates. Bilateral STN were selected as regions of interest and a seed-based functional MRI connectivity analysis was performed. RESULTS: A decreased functional connectivity between STN and sensorimotor cortex in both PD patient groups compared to controls was found. Whereas an increased functional connectivity between STN and thalamus was found in PD patient groups relative to controls. Candidates for DBS showed a decreased functional connectivity between bilateral STN and bilateral sensorimotor areas relative to non-candidates. In patients eligible for DBS, a weaker STN functional connectivity with left supramarginal and angular gyri was related with a more severe rigidity and bradykinesia whereas a higher connectivity between STN and cerebellum/pons was related to poorer tremor score. CONCLUSION: Our results suggest that functional connectivity of STN varies among PD patients eligible or not for DBS. Future studies would confirm whether DBS modulates and restores functional connectivity between STN and sensorimotor areas in treated patients.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Tálamo , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: A substantial proportion of Wilson's disease (WD) patients exhibit residual neurological symptoms. Data on the prognostic value of initial clinical features and treatment choices in WD patients compliant to the therapy is relatively sparse. AIM: The aim of the present study was to identify predictors of the long-term outcome of patients with WD with good treatment adherence. METHODS: Forty patients with neurological form of WD were evaluated before the de-coppering treatment initiation (based on the medical records) and after mean 15.25 ± 11.24 years of the stable treatment. Severity of neurological symptoms were assessed with a tier two of Global Assessment Scale (GAS) for Wilson's Disease. RESULTS: The most frequent symptoms prior to treatment initiation were dysarthria (90%), tremor (90%), clumsiness (67.5%), depression (67.5%), and gait disturbance (62.5%). Significant decrease in the frequency of dysarthria, clumsiness, tremor, gait disturbance, postural instability and an improvement in school/work performance were observed after the long-term treatment, while frequency of dysphagia, drooling, bradykinesia and rigidity, dystonic and choreatic features did not change. Overall symptom severity decreased over time. Presence of dystonia before treatment initiation was the only identified predictor of worse residual GAS score. Greater severity of residual dystonia was associated with female gender and longer disease duration. CONCLUSION: Although patients with neurological form of WD compliant to de-coppering treatment had favorable disease outcome, a significant burden of residual neurological symptoms was observed after the long-term follow-up. Dystonia at disease onset was the only identified predictor of the worse long-term outcome.
Assuntos
Distonia , Distúrbios Distônicos , Degeneração Hepatolenticular , Transtornos dos Movimentos , Humanos , Feminino , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/terapia , Tremor/complicações , Disartria/etiologia , Cobre , Transtornos dos Movimentos/complicações , Distúrbios Distônicos/complicaçõesRESUMO
Multiple system atrophy (MSA) is a rare, adult-onset, progressive neurodegenerative disorder with major diagnostic challenges. Aiming for a better diagnostic accuracy particularly at early disease stages, novel Movement Disorder Society criteria for the diagnosis of MSA (MDS MSA criteria) have been recently developed. They introduce a neuropathologically established MSA category and three levels of clinical diagnostic certainty including clinically established MSA, clinically probable MSA, and the research category of possible prodromal MSA. The diagnosis of clinically established and clinically probable MSA is based on the presence of cardiovascular or urological autonomic failure, parkinsonism (poorly L-Dopa-responsive for the diagnosis of clinically established MSA), and cerebellar syndrome. These core clinical features need to be associated with supportive motor and non-motor features (MSA red flags) and absence of any exclusion criteria. Characteristic brain MRI markers are required for a diagnosis of clinically established MSA. A research category of possible prodromal MSA is devised to capture patients manifesting with autonomic failure or REM sleep behavior disorder and only mild motor signs at the earliest disease stage. There is a number of promising laboratory markers for MSA that may help increase the overall clinical diagnostic accuracy. In this review, we will discuss the core and supportive clinical features for a diagnosis of MSA in light of the new MDS MSA criteria, which laboratory tools may assist in the clinical diagnosis and which major differential diagnostic challenges should be borne in mind.
Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Adulto , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Diagnóstico Diferencial , Transtornos Parkinsonianos/diagnóstico , Imageamento por Ressonância Magnética , LevodopaRESUMO
This study investigated longitudinal clinical, structural and functional brain alterations in Parkinson's disease patients with freezing of gait (PD-FoG) and in those developing (PD-FoG-converters) and not developing FoG (PD-non-converters) over two years. Moreover, this study explored if any clinical and/or MRI metric predicts FoG development. Thirty PD-FoG, 11 PD-FoG-converters and 11 PD-non-converters were followed for two years. Thirty healthy controls were included at baseline. Participants underwent clinical and MRI visits. Cortical thickness, basal ganglia volumes and functional network graph metrics were evaluated at baseline and over time. In PD groups, correlations between baseline MRI and clinical worsening were tested. A ROC curve analysis investigated if baseline clinical and MRI measures, selected using a stepwise model procedure, could differentiate PD-FoG-converters from PD-non-converters. At baseline, PD-FoG patients had widespread cortical/subcortical atrophy, while PD-FoG-converters and non-converters showed atrophy in sensorimotor areas and basal ganglia relative to controls. Over time, PD-non-converters accumulated cortical thinning of left temporal pole and pallidum without significant clinical changes. PD-FoG-converters showed worsening of disease severity, executive functions, and mood together with an accumulation of occipital atrophy, similarly to PD-FoG. At baseline, PD-FoG-converters relative to controls and PD-FoG showed higher global and parietal clustering coefficient and global local efficiency. Over time, PD-FoG-converters showed reduced parietal clustering coefficient and sensorimotor local efficiency, PD-non-converters showed increased sensorimotor path length, while PD-FoG patients showed stable graph metrics. Stepwise prediction model including dyskinesia, postural instability and gait disorders scores and parietal clustering coefficient was the best predictor of FoG conversion. Combining clinical and MRI data, ROC curves provided the highest classification power to predict the conversion (AUC = 0.95, 95%CI: 0.86-1). Structural MRI is a useful tool to monitor PD progression, while functional MRI together with clinical features may be helpful to identify FoG conversion early.
RESUMO
Parkinson's disease (PD) patients can be classified in tremor-dominant (TD) and postural-instability-and-gait-disorder (PIGD) motor subtypes. PIGD represents a more aggressive form of the disease that TD patients have a potentiality of converting into. This study investigated functional alterations within the cerebro-cerebellar system in PD-TD and PD-PIGD patients using stepwise functional connectivity (SFC) analysis and identified neuroimaging features that predict TD to PIGD conversion. Thirty-two PD-TD, 26 PD-PIGD patients and 60 healthy controls performed clinical/cognitive evaluations and resting-state functional MRI (fMRI). Four-year clinical follow-up data were available for 28 PD-TD patients, who were classified in 10 converters (cTD-PD) and 18 non-converters (ncTD-PD) to PIGD. The cerebellar seed-region was identified using a fMRI motor task. SFC analysis, characterizing regions that connect brain areas to the cerebellar seed at different levels of link-step distances, evaluated similar and divergent alterations in PD-TD and PD-PIGD. The discriminatory power of clinical data and/or SFC in distinguishing cPD-TD from ncPD-TD patients was assessed using ROC curve analysis. Compared to PD-TD, PD-PIGD patients showed decreased SFC in temporal lobe and occipital lobes and increased SFC in cerebellar cortex and ponto-medullary junction. Considering the subtype-conversion analysis, cPD-TD patients were characterized by increased SFC in temporal and occipital lobes and in cerebellum and ponto-medullary junction relative to ncPD-TD group. Combining clinical and SFC data, ROC curves provided the highest classification power to identify conversion to PIGD. These findings provide novel insights into the pathophysiology underlying different PD motor phenotypes and a potential tool for early characterization of PD-TD patients at risk of conversion to PIGD.
RESUMO
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Biomarcadores , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologiaRESUMO
Multiple system atrophy is considered a sporadic disease, but neuropathologically confirmed cases with a family history of parkinsonism have been occasionally described. Here we report a North-Bavarian (colloquially, Lion's tail region) six-generation pedigree, including neuropathologically confirmed multiple system atrophy and Parkinson's disease with dementia. Between 2012 and 2020, we examined all living and consenting family members of age and calculated the risk of prodromal Parkinson's disease in those without overt parkinsonism. The index case and one paternal cousin with Parkinson's disease with dementia died at follow-up and underwent neuropathological examination. Genetic analysis was performed in both and another family member with Parkinson's disease. The index case was a female patient with cerebellar variant multiple system atrophy and a positive maternal and paternal family history for Parkinson's disease and dementia in multiple generations. The families of the index case and her spouse were genealogically related, and one of the spouse's siblings met the criteria for possible prodromal Parkinson's disease. Neuropathological examination confirmed multiple system atrophy in the index case and advanced Lewy body disease, as well as tau pathology in her cousin. A comprehensive analysis of genes known to cause hereditary forms of parkinsonism or multiple system atrophy lookalikes was unremarkable in the index case and the other two affected family members. Here, we report an extensive European pedigree with multiple system atrophy and Parkinson`s disease suggesting a complex underlying α-synucleinopathy as confirmed on neuropathological examination. The exclusion of known genetic causes of parkinsonism or multiple system atrophy lookalikes suggests that variants in additional, still unknown genes, linked to α-synucleinopathy lesions underlie such neurodegenerative clustering.
RESUMO
BACKGROUND: Progressive gait impairment in Parkinson's disease (PD) leads to significant disability. Quantitative gait parameters analysis provides valuable information about fine gait alterations. OBJECTIVES: To analyse change of gait parameters in patients with early PD at the stage of hemiparkinsonism and after 1 year of follow up, taking into account clinical asymmetry. METHODS: Consecutive early PD outpatients with strictly unilateral motor features underwent clinical and neuropsychological assessment at the study entry and after 1 year of follow up. Gait was assessed with GAITRite walkway using dual-task methodology. Spatiotemporal gait parameters (step time and length, swing time and double support time) and their coefficients of variation (CV), gait velocity and heel-to-heel base support were evaluated. RESULTS: We included 42 PD patients with disease duration of 1.3 years (±1.13). Progression of motor and non-motor symptoms, without significant cognitive worsening, was observed after 1 year of follow up. Significant shortening of the swing time, prolongation of the double support and increase of their CVs were observed during all task conditions similarly for most parameters on symptomatic and asymptomatic bodysides, except for CV for the swing time under the combined task. CONCLUSION: Alterations of the swing time and double support time are already present even at the asymptomatic body side, and progress similarly, or even at faster pace, at this side, despite dopaminergic treatment These parameters deserve further investigation in larger, prospective studies to address their potential to serve as markers of progression in interventional disease modifying trials with early PD patients.
Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Marcha , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Estudos Longitudinais , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Estudos ProspectivosRESUMO
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/terapia , Doença de Parkinson/terapia , alfa-SinucleínaRESUMO
BACKGROUND: The second consensus criteria for the diagnosis of multiple system atrophy (MSA) are widely recognized as the reference standard for clinical research, but lack sensitivity to diagnose the disease at early stages. OBJECTIVE: To develop novel Movement Disorder Society (MDS) criteria for MSA diagnosis using an evidence-based and consensus-based methodology. METHODS: We identified shortcomings of the second consensus criteria for MSA diagnosis and conducted a systematic literature review to answer predefined questions on clinical presentation and diagnostic tools relevant for MSA diagnosis. The criteria were developed and later optimized using two Delphi rounds within the MSA Criteria Revision Task Force, a survey for MDS membership, and a virtual Consensus Conference. RESULTS: The criteria for neuropathologically established MSA remain unchanged. For a clinical MSA diagnosis a new category of clinically established MSA is introduced, aiming for maximum specificity with acceptable sensitivity. A category of clinically probable MSA is defined to enhance sensitivity while maintaining specificity. A research category of possible prodromal MSA is designed to capture patients in the earliest stages when symptoms and signs are present, but do not meet the threshold for clinically established or clinically probable MSA. Brain magnetic resonance imaging markers suggestive of MSA are required for the diagnosis of clinically established MSA. The number of research biomarkers that support all clinical diagnostic categories will likely grow. CONCLUSIONS: This set of MDS MSA diagnostic criteria aims at improving the diagnostic accuracy, particularly in early disease stages. It requires validation in a prospective clinical and a clinicopathological study. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Atrofia de Múltiplos Sistemas , Encéfalo/patologia , Consenso , Humanos , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Estudos ProspectivosRESUMO
This study aimed to identify functional neuroimaging patterns anticipating the clinical indication for deep brain stimulation (DBS) in patients with Parkinson's disease (PD). A cohort of prospectively recruited patients with PD underwent neurological evaluations and resting-state functional MRI (RS-fMRI) at baseline and annually for 4 years. Patients were divided into two groups: 19 patients eligible for DBS over the follow-up and 41 patients who did not meet the criteria to undergo DBS. Patients selected as candidates for DBS did not undergo surgery at this stage. Sixty age- and sex-matched healthy controls performed baseline evaluations. Graph analysis and connectomics assessed global and local topological network properties and regional functional connectivity at baseline and at each time point. At baseline, network analysis showed a higher mean nodal strength, local efficiency, and clustering coefficient of the occipital areas in candidates for DBS over time relative to controls and patients not eligible for DBS. The occipital hyperconnectivity pattern was confirmed by regional analysis. At baseline, a decreased functional connectivity between basal ganglia and sensorimotor/frontal networks was found in candidates for DBS compared to patients not eligible for surgery. In the longitudinal analysis, patient candidate for DBS showed a progressively decreased topological brain organization and functional connectivity, mainly in the posterior brain networks, and a progressively increased connectivity of basal ganglia network compared to non-candidates for DBS. RS-fMRI may support the clinical indication to DBS and could be useful in predicting which patients would be eligible for DBS in the earlier stages of PD.