Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-1): 034903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632736

RESUMO

The energy transfer between bouncing particles and rigid boundaries during impacts is crucially influenced not only by restitution coefficients of the material but also by particle shapes. This is particularly important when such particles are mechanically agitated with vibrating plates. Inertial measurement units are able to measure all acceleration and rotational velocity components of an object and store these data for subsequent analysis. We employ them to measure the dynamics of cubes and icosahedra on vibrating plates to study the efficiency of energy transfer into the individual degrees of freedom (DOFs) of the excited object. The rotational DOFs turn out to be much less excited than the vertical translational motion. Most remarkably, there is only little difference between the two Platonic solids in both the absolute energies and the energy partition ratios.

2.
NPJ Microgravity ; 10(1): 36, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519479

RESUMO

Granular gases are fascinating non-equilibrium systems with interesting features such as spontaneous clustering and non-Gaussian velocity distributions. Mixtures of different components represent a much more natural composition than monodisperse ensembles but attracted comparably little attention so far. We present the observation and characterization of a mixture of rod-like particles with different sizes and masses in a drop tower experiment. Kinetic energy decay rates during granular cooling and collision rates were determined and Haff's law for homogeneous granular cooling was confirmed. Thereby, energy equipartition between the mixture components and between individual degrees of freedom is violated. Heavier particles keep a slightly higher average kinetic energy than lighter ones. Experimental results are supported by numerical simulations.

3.
Chemphyschem ; 25(12): e202400166, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529677

RESUMO

We study the coarsening behavior of assemblies of islands on smectic A freely suspended films in ISS microgravity experiments. The islands can be regarded as liquid inclusions in a two-dimensional fluid in analogy to liquid droplets of the discontinuous phase of an emulsion. The coarsening is effectuated by two processes, predominantly by island coalescence, but to some extend also by Ostwald ripening, whereby large islands grow at the expense of surrounding smaller ones. A peculiarity of this system is that the continuous and the discontinuous phases consist of the same material. We determine the dynamics, analyze the self-similar aging of the island size distribution and discuss characteristic exponents of the mean island growth.

4.
Soft Matter ; 20(5): 1036-1046, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38205564

RESUMO

We investigate micrometer-sized flat droplets consisting of an isotropic core surrounded by a nematic rim in freely suspended smectic A liquid-crystal films. In contrast to purely isotropic droplets which are characterized by a sharp edge and no long-range interactions, the nematic fringe introduces a continuous film thickness change resulting in long-range mutual attraction of droplets. The coalescence scenario is divided in two phases. The first one consists in the fusion of the nematic regions. The second phase involves the dissolution of a thin nematic film between the two isotropic cores. The latter has many similarities with the rupture of thin liquid films between droplets coalescing in an immiscible viscous liquid.

5.
Soft Matter ; 19(32): 6108-6115, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534765

RESUMO

Disclinations or disclination clusters in smectic C freely suspended films with topological charges larger than one are unstable. They disintegrate, preferably in a spatially symmetric fashion, into single defects with individual charges of +1, which is the smallest positive topological charge allowed in polar vector fields. While the opposite process of defect annihilation is well-defined by the initial defect positions, disintegration starts from a singular state and the following scenario including the emerging regular defect patterns must be selected by specific mechanisms. We analyze experimental data and compare them with a simple model where the defect clusters adiabatically pass quasi-equilibrium solutions in one-constant approximation. It is found that the defects arrange in geometrical patterns that correspond very closely to superimposed singular defect solutions, without additional director distortions. The patterns expand by affine transformations where all distances between individual defects scale with the same time-dependent scaling factor proportional to the square-root of time.

6.
Phys Rev E ; 108(6): L062901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243450

RESUMO

We investigate the force of flowing granular material on an obstacle. A sphere suspended in a discharging silo experiences both the weight of the overlaying layers and drag of the surrounding moving grains. In experiments with frictional hard glass beads, the force on the obstacle was practically flow-rate independent. In contrast, flow of nearly frictionless soft hydrogel spheres added drag to the gravitational force. The dependence of the total force on the obstacle diameter is qualitatively different for the two types of material: It grows quadratically with the obstacle diameter in the soft, low-friction material, while it grows much weaker, nearly linearly with the obstacle diameter, in the bed of glass spheres. In addition to the drag, the obstacle embedded in flowing low-friction soft particles experiences a total force from the top as if immersed in a hydrostatic pressure profile, but a much lower counterforce acting from below. In contrast, when embedded in frictional, hard particles, a strong pressure gradient forms near the upper obstacle surface.

7.
Phys Rev E ; 106(5): L052901, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559461

RESUMO

Studies of granular materials, both theoretical and experimental, are often restricted to convex grain shapes. We demonstrate that a nonconvex grain shape can lead to a qualitatively novel macroscopic dynamics. Spatial crosses (hexapods) are continuously sheared in a split-bottom container. Thereby, they develop a secondary flow profile that is completely opposite to that of rod-shaped or lentil-shaped convex grains in the same geometry. The crosses at the surface migrate towards the rotation center and sink there mimicking a "reverse Weissenberg effect." The observed surface flow field suggests the existence of a radial outward flow in the depth of the granular bed, thus, forming a convection cell. This flow field is connected with a dimple formed in the rotation center. The effect is strongly dependent on the particle geometry and the height of the granular bed.

8.
Soft Matter ; 18(16): 3193-3205, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383349

RESUMO

Smectic liquid crystals are fluids, and in most rheological situations they behave as such. Nevertheless, when thin freely floating films of smectic A or smectic C materials are compressed quickly in-plane, they resist such stress by buckling similar to solid membranes under lateral stress. We report experimental observations of wrinkling and bulging of finite domains within the films, so-called islands, and give a qualitative explanation of different observed patterns. Depending on the external stress and their dimensions, the islands can expel a specifically shaped bulge in their center, form radial wrinkles or develop target-like wrinkle structures. When the external stress is relaxed, these patterns disappear reversibly.

9.
Soft Matter ; 18(1): 146-155, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34842265

RESUMO

Smectic freely-suspended films can wrinkle like solid sheets. This has been demonstrated earlier with shape-fluctuating smectic bubbles. Here, we exploit the collapse of smectic catenoid films with a central equatorial film to expose the latter to rapid lateral compression. Wrinkle formation is observed in the planar film and the thickness dependence of the undulation wavelength is measured. In addition to the central film, its border undergoes an undulation instability as well.

10.
Sci Rep ; 11(1): 10621, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012072

RESUMO

Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow-based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.

11.
Phys Rev E ; 103(4-1): 042901, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34006001

RESUMO

More than 30 years ago Edwards and co-authors proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to analyze statistical properties of jammed granular ensembles to test Edwards theory. Identical spheres packed in a nearly two-dimensional geometrical confinement were studied in experiments and numerical simulations. When tapped, the system evolves toward a ground state, but due to incompatible domain structures it gets trapped. Analytical calculations reproduce relatively well our simulation results, which allows us to test Edwards theory on a coupled system of two subsystems with different properties. We find that the joint system can only be described by the Edwards theory if considered as a single system due to the constraints in the stresses. The results show counterintuitive effects as in the coupled system the change in the order parameter is opposite to what is expected from the change in the compactivity.

12.
Soft Matter ; 17(16): 4317-4327, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908432

RESUMO

Force networks play an important role in the stability of configurations when granular material is packed into a container. These networks can redirect part of the weight of grains inside a container to the side walls. We employ monodisperse stress-birefringent spheres to visualize the contact forces in a quasi-2D and a nearly-2D configuration of these spheres in a thin cuboid cell. The packing structures are particularly simple: a hexagonal lattice in the ground state when the cell width is equal to the sphere diameter, and a frustrated, slightly distorted lattice in thicker cells. The force redistribution is substantially changed by this geometrical modification. In both cases, we observe an 'inverse' Janssen effect with the pressure decreasing from the top to the bottom of the container when the material is loaded with a weight on top of the vessel.

13.
Soft Matter ; 17(16): 4282-4295, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33688878

RESUMO

We study the outflow dynamics and clogging phenomena of mixtures of soft, elastic low-friction spherical grains and hard frictional spheres of similar size in a quasi-two-dimensional (2D) silo with narrow orifice at the bottom. Previous work has demonstrated the crucial influence of elasticity and friction on silo discharge. We show that the addition of small amounts, even as low as 5%, of hard grains to an ensemble of soft, low-friction grains already has significant consequences. The mixtures allow a direct comparison of the probabilities of the different types of particles to clog the orifice. We analyze these probabilities for the hard, frictional and the soft, slippery grains on the basis of their participation in the blocking arches, and compare outflow velocities and durations of non-permanent clogs for different compositions of the mixtures. Experimental results are compared with numerical simulations. The latter strongly suggest a significant influence of the inter-species particle friction.

14.
Soft Matter ; 16(34): 8013-8023, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32785350

RESUMO

Soft, low-friction particles in silos show peculiar features during their discharge. The outflow velocity and the clogging probability both depend upon the momentary silo fill height, in sharp contrast to silos filled with hard particles. The reason is the fill-height dependence of the pressure at the orifice. We study the statistics of silo discharge of soft hydrogel spheres. The outflow is found to become increasingly fluctuating and even intermittent with decreasing orifice size, and with decreasing fill height. In orifices narrower than two particle diameters, outflow can stop completely, but in contrast to clogs formed by rigid particles, these congestions may dissolve spontaneously. We analyze such non-permanent congestions and attribute them to slow reorganization processes in the container, caused by viscoelasticity of the material.

15.
Soft Matter ; 16(19): 4607-4614, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32352134

RESUMO

Coalescence of droplets is an ubiquitous phenomenon in chemical, physical and biological systems. The process of merging of liquid objects has been studied during the past years experimentally and theoretically in different geometries. We introduce a unique system that allows a quasi two-dimensional description of the coalescence process: Micrometer-sized flat droplets in freely suspended smectic liquid-crystal films. We find that the bridge connecting the droplets grows linearly in time during the initial stage of coalescence, both with respect to its height and lateral width. We also verify self-similar dynamics of the bridge during the first stage of coalescence. We compare our results with a model based on the thin sheet equations. Our experiments confirm that the most important geometrical parameter influencing the coalescence rate is the contact angle of the droplets.

16.
Soft Matter ; 15(44): 9018-9030, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675052

RESUMO

The dynamics of magnetic nanoparticles in rotating magnetic fields is studied both experimentally and theoretically. The experimental investigation is focused on the conversion of the magnetic forces to a mechanical torque acting on a ferrofluid confined in a spherical cavity in a rotating magnetic field. Polydispersity usually present in diluted ferrofluids is shown to play a crucial role in the torque conversion. Important features observed experimentally are reproduced theoretically in studies on the dynamics of particles with uniaxial magnetic anisotropy in the presence of thermal noise. The phase lag between the rotating magnetic field and the induced rotating magnetization, as well as the corresponding torque which is transferred to the carrier fluid because of the mutual coupling between both, is analyzed as a function of the particle size. It is shown that for large particles the magnetic moment is locked to the anisotropy axis. On lowering the particle radius, Néel relaxation becomes increasingly important. Illustrative numerical calculations demonstrating this behavior are performed for magnetic parameters typical for iron oxide.

17.
Soft Matter ; 15(40): 8156-8163, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31595938

RESUMO

Droplet arrays in thin, freely suspended liquid-crystalline smectic A films can form two-dimensional (2D) colloids. The droplets interact repulsively, arranging locally in a more or less hexagonal arrangement with only short-range spatial and orientational correlations and local lattice cell parameters that depend on droplet size. In contrast to quasi-2D colloids described earlier, there is no 3D bulk liquid subphase that affects the hydrodynamics. Although the films are surrounded by air, the droplet dynamics are genuinely 2D, the mobility of each droplet in its six-neighbor cage being determined by the ratio of cage and droplet sizes, rather than by the droplet size as in quasi-2D colloids. These experimental observations are described well by Saffman's model of a diffusing particle in a finite 2D membrane. The experiments were performed in microgravity, on the International Space Station.

18.
Soft Matter ; 15(34): 6769-6778, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31393512

RESUMO

We demonstrate spontaneous wrinkling as a transient dynamical pattern in thin freely floating smectic liquid-crystalline films. The peculiarity of such films is that, while behaving liquid-like with respect to flow in the film plane, they cannot quickly expand their thickness because that requires stacking of additional smectic layers. At short time scales, they therefore behave like quasi-incompressible membranes, very different from soap films. Smectic films can develop a transient undulation instability or form bulges in response to lateral compression. Optical experiments with freely floating bubbles on parabolic flights and in ground lab experiments are reported. The characteristic wavelengths of the wrinkles are in the submillimeter range. We demonstrate the dynamic nature of the pattern formation mechanism and develop a basic model that explains the physical mechanism for the wavelength selection and wrinkle orientation.

19.
Soft Matter ; 15(18): 3788-3795, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990220

RESUMO

We investigate the structure and the magnetooptical response of isotropic and anisotropic fibrillous organoferrogels with mobile magnetic nanoparticles (MNPs). We demonstrate that the presence of the gel network restricts the magnetooptical response of the ferrogel. Even though the ferrogel exhibits no magnetic hysteresis, an optical hysteresis has been found. This suggests that the magnetooptical response is primarily determined by the dynamics of self-assembly of the MNPs into shape-anisotropic agglomerates. Furthermore, we show that the optical anisotropy of the system can be fine-tuned by varying the concentration of the gelator and the MNPs, respectively. The optical response in structurally anisotropic gels becomes orientation-dependent, revealing an intricate interplay between the gel mesh and the MNPs.

20.
Phys Rev E ; 97(6-1): 062904, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011446

RESUMO

The stationary flow field in a quasi-two-dimensional hopper is investigated experimentally. The behavior of materials consisting of beads and elongated particles with different aspect ratio is compared. We show, that while the vertical velocity in the flowing region can be fitted with a Gaussian function for beads, in the case of elongated grains the flowing channel is narrower and is bordered with sharper velocity gradient. For this case, we quantify deviations from the Gaussian velocity profile. Relative velocity fluctuations are considerably larger and slower for elongated grains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA