Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 2): 132603, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788877

RESUMO

Surface-functionalized cellulose materials are developed for various purposes, including food additives and food contact materials. A new biologically relevant testing strategy has been developed based on guidance from the European Food Safety Authority to demonstrate the safety of several next-generation surface-functionalized cellulose materials. This strategy involves a complex three-stage simulated digestion to compare the health effects of thirteen novel different types of cellulose. The physical and chemical properties of surface-functionalized fibrillated celluloses differed depending on the type, amount, and location of functional groups such as sulfonate, TEMPO-oxidized carboxy, and periodate-chlorite oxidized dicarboxylic acid celluloses. Despite exposure to gastrointestinal fluids, the celluloses maintained their physicochemical properties, such as negative surface charges and high length-to-width/thickness aspect ratios. An established intestinal co-culture model was used to measure cytotoxicity, barrier integrity, oxidative stress, and pro-inflammatory response to create a toxicological profile for these unique materials. We conclude that the C6 carboxylated cellulose nanofibrils by TEMPO-oxidation induced the most toxicity in the biological model used in this study and that the observed effects were most prominent at the 4-hour post-exposure time point.

2.
RSC Adv ; 14(14): 9860-9868, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38528919

RESUMO

Amphiphilic sulfated cellulose nanofibrils were synthesized with yields in excess of 99% by sulfation of dissolving pulp cellulose using chlorosulfonic acid in anhydrous N,N-dimethyl formamide followed by high-speed blending. The sulfation level was stoichiometrically tunable to between 1.48 and 2.23 mmol g-1. The optimized SCNF demonstrated the ability to act as an effective dispersant for graphene produced via exfoliation in aqueous media, allowing for the production of aqueous stabilized graphene with 3.9 ± 0.3 wt% graphite to graphene conversion and suspended solids comprised of 19.5 ± 1.5 wt% graphene. Graphene exfoliated with SCNF was observed to consist exclusively of mono- and bilayers, with 42% of sheets being monolayer. Furthermore, it was demonstrated that SCNF defibrillation and graphene exfoliation could be combined into a single one-pot process.

3.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470807

RESUMO

Regioselective C6 and C2,C3 carboxylated cellulose nanofibrils (CNFs) have been robustly generated from dissolving pulp, a readily available source of unmodified cellulose, via stoichiometrically optimized 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated and sequential sodium periodate-sodium chlorite (PC) oxidation coupled with high-speed blending. Both regioselectively optimized carboxylated CNF series possess the widest ranges of comparable charges (0.72-1.48 mmol/g for T-CNFs vs. 0.72-1.10 mmol/g for PC-CNFs), but similar ranges of thickness (1.3-2.4 nm for T-CNF, 1.8-2.7 nm PC-CNF), widths (4.6-6.6 nm T-CNF, 5.5-5.9 nm PC-CNF), and lengths (254-481 nm T-CNF, 247-442 nm PC-CNF). TEMPO-mediated oxidation is milder and one-pot, thus more time and process efficient, whereas the sequential periodate-chlorite oxidation produces C2,C3 dialdehyde intermediates that are amenable to further chemical functionalization or post-reactions. These two well-characterized regioselectively carboxylated CNF series represent coherent cellulose nanomaterial models from a single woody source and have served as references for their safety study toward the development of a safer-by-design substance evaluation tool.

4.
Ann Biomed Eng ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421478

RESUMO

Helmet-testing headforms replicate the human head impact response, allowing the assessment of helmet protection and injury risk. However, the industry uses three different headforms with varying inertial and friction properties making study comparisons difficult because these headforms have different inertial and friction properties that may affect their impact response. This study aimed to quantify the influence of headform coefficient of friction (COF) and inertial properties on oblique impact response. The static COF of each headform condition (EN960, Hybrid III, NOCSAE, Hybrid III with a skull cap, NOCSAE with a skull cap) was measured against the helmet lining material used in a KASK prototype helmet. Each headform condition was tested with the same helmet model at two speeds (4.8 & 7.3 m/s) and two primary orientations (y-axis and x-axis rotation) with 5 repetitions, totaling 100 tests. The influence of impact location, inertial properties, and friction on linear and rotational impact kinematics was investigated using a MANOVA, and type II sums of squares were used to determine how much variance in dependent variables friction and inertia accounted for. Our results show significant differences in impact response between headforms, with rotational head kinematics being more sensitive to differences in inertial rather than frictional properties. However, at high-speed impacts, linear head kinematics are more affected by changes in frictional properties rather than inertial properties. Helmet testing protocols should consider differences between headforms' inertial and frictional properties during interpretation. These results provide a framework for cross-comparative analysis between studies that use different headforms and headform modifiers.

5.
Ann Biomed Eng ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540293

RESUMO

Dummy headforms used for impact testing have changed little over the years, and frictional characteristics are thought not to represent the human head accurately. The frictional interface between the helmet and head is an essential factor affecting impact response. However, few studies have evaluated the coefficient of friction (COF) between the human head and helmet surface. This study's objectives were to quantify the human head's static and dynamic COF and evaluate the effect of biological sex and hair properties. Seventy-four participants slid their heads along a piece of helmet foam backed by a fixed load cell at varying normal force levels. As normal force increased, static and dynamic human head COF decreased following power-law curves. At 80 N, the static COF is 0.32 (95% CI 0.30-0.34), and the dynamic friction coefficient is 0.27 (95% CI 0.26-0.28). Biological sex and hair properties were determined not to affect human head COF. The COFs between the head and helmet surface should be used to develop more biofidelic head impact testing methods, define boundary conditions for computer simulations, and aid decision-making for helmet designs.

6.
J Orthop Res ; 41(9): 1953-1964, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36866826

RESUMO

Patients with ankle arthritis (AA) have side-to-side limb differences at the ankle and in spatiotemporal measures; however, the degree of symmetry between limbs has not been compared to a healthy population. The purpose of this study was to determine differences in limb symmetry during walking for discrete and time-series measures when comparing patients with unilateral AA to healthy participants. Thirty-seven AA and 37 healthy participants were age, gender, and body mass index matched. Three-dimensional gait mechanics and ground reaction force (GRF) were captured during four to seven walking trails. GRF and hip and ankle mechanics were extracted bilaterally for each trial. The Normalized Symmetry Index and Statistical Parameter Mapping were used to assess discrete and time-series symmetry, respectively. Discrete symmetry was analyzed using linear mixed-effect models to determine significant differences between groups (α = 0.05). Compared to healthy participants, patients with AA had decreased weight acceptance (p = 0.017) and propulsive (p < 0.001) GRF, ankle plantarflexion (p = 0.021), ankle dorsiflexion (p = 0.010), and ankle plantarflexion moment (p < 0.001) symmetry. Significant regions of difference were found between limbs and groups throughout the stance phase for the vertical GRF force (p < 0.001), the ankle angle during push-off (p = 0.047), the plantarflexion moment (p < 0.001), and the hip extension angle (p = 0.034) and moment (p = 0.010). Patients with AA have decreased symmetry in the vertical GRF and at the ankle and hip during the weight acceptance and propulsive portions of the stance phase. Therefore, clinicians should try a non improving symmetry focusing on changing hip and ankle mechanics during the weight acceptance and propulsive phases of gait.


Assuntos
Tornozelo , Artrite , Humanos , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Caminhada
7.
bioRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711506

RESUMO

The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain "wMel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines rescued these phenotypes in the Wolbachia-free, flies suggesting that Wolbachia plays a role in providing this metabolite that is normally limiting for fly growth. Additionally, Wolbachia was sensitive to host pyrimidine metabolism: Wolbachia titers increased upon transgenic knockdown of the Drosophila de novo pyrimidine synthesis pathway but not knockdown of the de novo purine synthesis pathway. We propose that Wolbachia acts as a nutritional symbiont to supplement fly development and enhance host fitness.

8.
Polymers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201701

RESUMO

The widely used high-density polyethylene (HDPE) polymer has inadequate mechanical and thermal properties for structural applications. To overcome this challenge, nano zinc oxide (ZnO) and nano boron oxide (B2O3) doped lignin-containing cellulose nanocrystals (L-CNC) were blended in the polymer matrix. The working hypothesis is that lignin will prevent CNC aggregation, and metal oxides will reduce the flammability of polymers by modifying their degradation pathways. This research prepared and incorporated safe, effective, and eco-friendly hybrid systems of nano ZnO/L-CNC and nano B2O3/L-CNC into the HDPE matrix to improve their physio-mechanical and fire-retardant properties. The composites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, thermo-gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, horizontal burning test, and microcalorimetry test. The results demonstrated a substantial increase in mechanical properties and a reduction in flammability. The scanning electron microscope (SEM) images showed some agglomeration and irregular distribution of the inorganic oxides.

9.
Comput Biol Med ; 145: 105446, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390748

RESUMO

Biomechanical relationships involving lingual myoanatomy, contractility, and bolus movement are fundamental properties of human swallowing. To portray the relationship between lingual deformation and bolus flow during swallowing, a weakly one-way solid-fluid finite element model (FEM) was derived employing an elemental mesh aligned to magnetic resonance diffusional tractography (Q-space MRI, QSI) of the human tongue, an arbitrary Lagrangian-Eulerian (ALE) formulation with remeshing to account for the effects of lingual surface (boundary) deformation, an implementation of patterned fiber shortening, and a computational visualization of liquid bolus flow. Representing lingual tissue deformation in terms of its 2D principal Lagrangian strain in the mid-sagittal plane, we demonstrated that the swallow sequence was characterized by initial superior-anterior expansion directed towards the hard palate, followed by sequential, radially directed, contractions of the genioglossus and verticalis to promote lingual rotation (lateral perspective) and propulsive displacement. We specifically assessed local bolus velocity as a function of viscosity (perfect slip conditions) and observed that a low viscosity bolus (5 cP) exhibited maximal displacement, surface spreading and local velocity compared to medium (110 cP, 300 cP) and high (525 cP) viscosity boluses. Analysis of local nodal velocity revealed that all bolus viscosities exhibited a bi-phasic progression, with the low viscosity bolus being the most heterogeneous and fragmented and the high viscosity bolus being the most homogenous and cohesive. Intraoral bolus cohesion was depicted in terms of the distributed velocity gradient, with higher gradients being associated with increased shear rate and bolus fragmentation. Lastly, we made a sensitivity analysis on tongue stiffness and contractility by varying the degree of extracellular matrix (ECM) stiffness through effects on the Mooney-Rivlin derived passive matrix and by varying maximum tetanized isometric stress, and observed that a graded increase of ECM stiffness was associated with reduced bolus spreading, posterior displacement, and surface velocity gradients, whereas a reduction of global contractility resulted in a graded reduction of obtainable accommodation volume, absent bolus spreading, and loss of posterior displacement. We portray a unidirectionally coupled solid-liquid FEM which associates myoarchitecture-based lingual deformation with intra-oral bolus flow, and deduce that local elevation of the velocity gradient correlates with bolus fragmentation, a precondition believed to be associated with aspiration vulnerability during oropharyngeal swallowing.


Assuntos
Deglutição , Língua , Humanos , Imageamento por Ressonância Magnética , Rotação , Língua/diagnóstico por imagem , Viscosidade
10.
Biomolecules ; 11(9)2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34572560

RESUMO

In this study, cellulose nanofibrils (CNFs) were modified by catalyzed lactic acid esterification in an aqueous medium with SnCl2 as a catalyst. Films were made from unmodified and lactic acid-modified CNF without a polymer matrix to evaluate the effectiveness of the modification. Ungrafted and lactic acid-grafted CNF was also compounded with poly(lactic acid) (PLA) to produce composites. Mechanical, water absorption, and barrier properties were evaluated for ungrafted CNF, lactic acid-grafted CNF films, and PLA/CNF composites to ascertain the effect of lactic acid modification on the properties of the films and nanocomposites. FTIR spectra of the modified CNF revealed the presence of carbonyl peaks at 1720 cm-1, suggesting that the esterification reaction was successful. Modification of CNF with LA improved the tensile modulus of the produced films but the tensile strength and elongation decreased. Additionally, films made from modified CNF had lower water absorption, as well as water vapor and oxygen permeability, relative to their counterparts with unmodified CNFs. The mechanical properties of PLA/CNF composites made from lactic acid-grafted CNFs did not significantly change with respect to the ungrafted CNF. However, the addition of lactic acid-grafted CNF to PLA improved the water vapor permeability relative to composites containing ungrafted CNF. Therefore, the esterification of CNFs in an aqueous medium may provide an environmentally benign way of modifying the surface chemistry of CNFs to improve the barrier properties of CNF films and PLA/CNF composites.


Assuntos
Celulose/química , Ácido Láctico/química , Nanofibras/química , Poliésteres/química , Absorção Fisico-Química , Esterificação , Nanofibras/ultraestrutura , Oxigênio/análise , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor , Propriedades de Superfície , Resistência à Tração , Água/química
11.
Drug Alcohol Depend ; 227: 109010, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34488072

RESUMO

BACKGROUND: Earlier engagement in heavy drinking during adolescence is a risk factor for the development of alcohol use disorders later in life. Longitudinal studies in adolescents have linked brain structure and task-evoked function to future alcohol use; however, less is known about how intrinsic network-level interactions relate to future substance use during this developmental period. METHODS: In this prospective longitudinal study, resting-state functional connectivity of the ventral striatum, risky decision making, and sensation seeking were measured in 73 adolescents at baseline. Participants were between the ages of 14 and 15 and had no substantial history of substance use upon study entry. Follow-up interviews were conducted approximately every 3 months to assess the initiation of binge drinking (≥ 5 or ≥ 4 drinks per occasion for males or females, respectively). RESULTS: Adolescents who began binge drinking sooner exhibited greater connectivity of the ventral striatum to the left precuneus, left angular gyrus, and the left superior frontal gyrus. Greater connectivity of the ventral striatum to the right insula/putamen was associated with longer duration to the onset of binge drinking. Resting-state functional connectivity in these regions was not associated with baseline assessments of risky decision making or sensation seeking. CONCLUSIONS: Findings provide novel information about potential risk factors for early initiation of heavy alcohol use. Interventions that target relevant resting-state networks may enhance prevention efforts to decrease adolescent substance use by prolonging onset to heavier levels of alcohol consumption.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Estriado Ventral , Adolescente , Consumo Excessivo de Bebidas Alcoólicas/epidemiologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Estriado Ventral/diagnóstico por imagem
12.
Front Microbiol ; 11: 2094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013764

RESUMO

Urinary tract infections (UTIs) are one of the most common human bacterial infections. While UTIs are commonly associated with colonization by Escherichia coli, members of this species also have been found within the bladder of individuals with no lower urinary tract symptoms (no LUTS), also known as asymptomatic bacteriuria. Prior studies have found that both uropathogenic E. coli (UPEC) strains and E. coli isolates that are not associated with UTIs encode for virulence factors. Thus, the reason(s) why E. coli sometimes causes UTI-like symptoms remain(s) elusive. In this study, the genomes of 66 E. coli isolates from adult female bladders were sequenced. These isolates were collected from four cohorts, including women: (1) without lower urinary tract symptoms, (2) overactive bladder symptoms, (3) urgency urinary incontinence, and (4) a clinical diagnosis of UTI. Comparative genomic analyses were conducted, including core and accessory genome analyses, virulence and motility gene analyses, and antibiotic resistance prediction and testing. We found that the genomic content of these 66 E. coli isolates does not correspond with the participant's symptom status. We thus looked beyond the E. coli genomes to the composition of the entire urobiome and found that the presence of E. coli alone was not sufficient to distinguish between the urobiomes of individuals with UTI and those with no LUTS. Because E. coli presence, abundance, and genomic content appear to be weak predictors of UTI status, we hypothesize that UTI symptoms associated with detection of E. coli are more likely the result of urobiome composition.

13.
PeerJ ; 8: e9718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944418

RESUMO

The majority of bacteria within the human body are lysogens, often harboring multiple bacteriophage sequences (prophages) within their genomes. While several different types of environmental stresses can trigger or induce prophages to enter into the lytic cycle, they have yet to be fully explored and understood in the human microbiota. In the laboratory, the most common induction method is the DNA damaging chemical Mitomycin C. Although pH has been listed in the literature as an induction method, it is not widely used. Here, we detail a protocol for prophage induction by culture under different pH conditions. We explored the effects of pH on prophage induction in bacterial isolates from the bladder, where the pH is well documented to vary significantly between individuals as well as between healthy individuals and individuals with urinary tract symptoms or disease. Using this protocol, we successfully induced phages from seven bladder E. coli strains. Testing conditions and stressors appropriate to the environment from which a lysogen is isolated may provide insight into community dynamics of the human microbiota.

14.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537684

RESUMO

Recently, we isolated a temperate bacteriophage, Pseudomonas phage Dobby, from a calcium oxalate kidney stone. Here, we present the complete genome of the bacterial host harboring this phage, Pseudomonas aeruginosa UMB2738. From the analysis of the genome sequence, five additional prophage sequences were identified.

15.
Microbiol Resour Announc ; 8(35)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467111

RESUMO

Lactobacillus jensenii, a protective bacterium in the vaginal microbiota, is also a member of the female urinary tract community. Here, we report 11 genome sequences of L. jensenii strains isolated from catheterized urine from women. This effort greatly increases our knowledge of the genetic diversity of this species within the bladder.

16.
Polymers (Basel) ; 11(8)2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426592

RESUMO

The flammability of synthetic thermoplastic polymers has been recognized as an increasingly important safety problem. The goal of this study was to evaluate a green and safe fire-retardant system comprising of cellulose nanocrystals (CNC) and zinc oxide nanoparticles (ZnO). CNCs coated with nano ZnO were incorporated in the high-density polyethylene polymer (HDPE) matrix at different concentrations. Fire testing results of different formulations of HDPE containing 0.4 to 1.0% zinc oxide coated CNC exhibited a substantial decrease in the average mass loss, peak heat release rate and total smoke release. The time to ignition exhibited a positive correlation with CNC-ZnO concentration. Modest improvement in the flexural strength and moduli of composites was noticed validating no adverse effects of CNC-ZnO complex. The transmission electron microscopy further confirmed dispersion of nanoparticles as well as the presence of some nanoparticle aggregates in the matrix. The uniform dispersion of CNC-ZnO complex is expected to further improve fire and mechanical properties of polymer.

17.
Carbohydr Polym ; 190: 139-147, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29628231

RESUMO

This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches.

18.
Carbohydr Polym ; 169: 108-116, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504126

RESUMO

Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity. Analysis by Fourier transform infrared (FTIR) and FT-Raman spectroscopies showed that the long chain hydrocarbon structure was successfully grafted onto CNC surfaces. After transesterification the crystal size and crystallinity of nanocrystals were not changed as determined by Raman spectroscopy and wide angle X-ray diffraction (XRD). CNCFE showed higher thermal stability and smaller particle size than unmodified CNCs. Water contact angle measurement indicated the CNCFE surface has significantly higher hydrophobicity than unmodified CNCs. The transesterified CNCs could be potentially used as hydrophobic coatings and reinforcing agents to hydrophobic polymer for nanocomposites.


Assuntos
Celulose/química , Ácidos Graxos/química , Nanocompostos/química , Óleo de Brassica napus/química , Nanopartículas , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA