Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293068

RESUMO

Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.

2.
Sci Adv ; 9(13): eadf4055, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000885

RESUMO

The metalloproteases meprin α and meprin ß are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin ß form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/ß heterodimers. Galectin-3-deficient and meprin α/ß double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/ß heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/ß heterodimers may play a key role in colon host-microbiome homeostasis.


Assuntos
Galectina 3 , Metaloendopeptidases , Camundongos , Animais , Galectina 3/genética , Galectina 3/metabolismo , Metaloproteases/metabolismo , Proteólise , Camundongos Knockout , Homeostase
3.
PLoS One ; 17(7): e0271066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35816490

RESUMO

As ACE2 is the critical SARS-CoV-2 receptor, we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung, and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here, after demonstrating in vitro neutralization of SARS-CoV-2 by APN01, and after obtaining preliminary evidence of its tolerability and preventive efficacy in a mouse model, we pursued development of an aerosol formulation. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers has now been initiated (NCT05065645), with subsequent Phase II testing planned for individuals with SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Aerossóis , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Animais , Ensaios Clínicos Fase I como Assunto , Cães , Humanos , Camundongos , Nebulizadores e Vaporizadores , Peptidil Dipeptidase A/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2
4.
Mucosal Immunol ; 15(5): 896-907, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35856089

RESUMO

Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.


Assuntos
Interferon Tipo I , Macrófagos Alveolares , Interferon Tipo I/metabolismo , Lipopolissacarídeos , Pulmão , Transdução de Sinais
5.
Elife ; 112022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35023830

RESUMO

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNγ and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Interferon gama/farmacologia , SARS-CoV-2/patogenicidade , Imunidade Adaptativa/imunologia , Animais , Modelos Animais de Doenças , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34244315

RESUMO

RATIONALE: Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes. OBJECTIVES: To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function. METHODS: We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling. MEASUREMENTS AND MAIN RESULTS: We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power. CONCLUSION: Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.


Assuntos
Transplante de Pulmão , Microbiota , Aloenxertos , Estudos de Coortes , Humanos , Pulmão , RNA Ribossômico 16S/genética , Estudos Retrospectivos
7.
Allergy ; 77(2): 499-512, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33840121

RESUMO

BACKGROUND: In contrast to their clearly defined roles in allergic diseases, the physiologic functions of Immunoglobulin E antibodies (IgEs) and mast cells (MCs) remain enigmatic. Recent research supports the toxin hypothesis, showing that MCs and IgE-related type 2 immune responses can enhance host defense against certain noxious substances, including honeybee venom (BV). However, the mechanisms by which MCs can interfere with BV toxicity are unknown. In this study, we assessed the role of IgE and certain MC products in MC-mediated BV detoxification. METHODS: We applied in vitro and in vivo fluorescence microscopyimaging, and flow cytometry, fibroblast-based toxicity assays and mass spectrometry to investigate IgE-mediated detoxification of BV cytotoxicity by mouse and human MCs in vitro. Pharmacologic strategies to interfere with MC-derived heparin and proteases helped to define the importance of specific detoxification mechanisms. RESULTS: Venom-specific IgE increased the degranulation and cytokine responses of MCs to BV in vitro. Passive serum sensitization enhanced MC degranulation in vivo. IgE-activated mouse or human MCs exhibited enhanced potential for detoxifying BV by both proteolytic degradation and heparin-related interference with toxicity. Mediators released by IgE-activated human MCs efficiently degraded multiple BV toxins. CONCLUSIONS: Our results both reveal that IgE sensitization enhances the MC's ability to detoxify BV and also assign efficient toxin-neutralizing activity to MC-derived heparin and proteases. Our study thus highlights the potential importance of IgE, MCs, and particular MC products in defense against BV.


Assuntos
Venenos de Abelha , Mastócitos , Alérgenos/metabolismo , Animais , Degranulação Celular , Heparina/metabolismo , Humanos , Imunoglobulina E , Camundongos , Peptídeo Hidrolases/metabolismo
8.
bioRxiv ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545364

RESUMO

To develop a universal strategy to block SARS-CoV-2 cellular entry and infection represents a central aim for effective COVID-19 therapy. The growing impact of emerging variants of concern increases the urgency for development of effective interventions. Since ACE2 is the critical SARS-CoV-2 receptor and all tested variants bind to ACE2, some even at much increased affinity (see accompanying paper), we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here we show that intranasal administration of APN01 in a mouse model of SARS-CoV-2 infection dramatically reduced weight loss and prevented animal death. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers can now be initiated, with subsequent Phase II testing in individuals with SARS-CoV-2 infection. This strategy could be used to develop a viable and rapidly actionable therapy to prevent and treat COVID-19, against all current and future SARS-CoV-2 variants.

9.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34477811

RESUMO

Gain-of-function mutations in NLRP3 are responsible for a spectrum of autoinflammatory diseases collectively referred to as "cryopyrin-associated periodic syndromes" (CAPS). Treatment of CAPS patients with IL-1-targeted therapies is effective, confirming a central pathogenic role for IL-1ß. However, the specific myeloid cell population(s) exhibiting inflammasome activity and sustained IL-1ß production in CAPS remains elusive. Previous reports suggested an important role for mast cells (MCs) in this process. Here, we report that, in mice, gain-of-function mutations in Nlrp3 restricted to neutrophils, and to a lesser extent macrophages/dendritic cells, but not MCs, are sufficient to trigger severe CAPS. Furthermore, in patients with clinically established CAPS, we show that skin-infiltrating neutrophils represent a substantial biological source of IL-1ß. Together, our data indicate that neutrophils, rather than MCs, can represent the main cellular drivers of CAPS pathology.


Assuntos
Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos , Adolescente , Adulto , Idoso de 80 Anos ou mais , Animais , Feminino , Mutação com Ganho de Função , Humanos , Interleucina-1beta/metabolismo , Masculino , Mastócitos/patologia , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/patologia , Neutrófilos/fisiologia
10.
PLoS Pathog ; 17(4): e1009487, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33905460

RESUMO

Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.


Assuntos
Influenza Humana/imunologia , Lipocalina-2/metabolismo , Microbiota/imunologia , Transcriptoma , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Microbioma Gastrointestinal , Homeostase , Humanos , Imunidade , Influenza Humana/virologia , Lipocalina-2/genética , Pulmão/imunologia , Pulmão/virologia , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
12.
Allergo J Int ; 29(2): 46-62, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33224714

RESUMO

Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, and against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance, and survival, to challenge with reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice surviving an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcεRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.

13.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32910906

RESUMO

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Assuntos
Imunidade Adaptativa/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Alérgenos/imunologia , Animais , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia
14.
Sci Transl Med ; 11(522)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31826981

RESUMO

Epidermal growth factor receptor (EGFR)-targeted anticancer therapy induces stigmatizing skin toxicities affecting patients' quality of life and therapy adherence. The lack of mechanistic details underlying these adverse events hampers their management. We found that EGFR/ERK signaling is required in LRIG1-positive stem cells during de novo hair eruption to secure barrier integrity and prevent the invasion of commensal microbiota and inflammatory skin disease. EGFR-deficient epidermis is permissive for microbiota outgrowth and displays an atopic-like TH2-dominated signature. The opening of the follicular ostia during hair eruption allows invasion of commensal microbiota into the hair follicle, initiating an additional TH1 and TH17 response culminating in chronic folliculitis. Restoration of epidermal ERK signaling via prophylactic FGF7 treatment or transgenic SOS expression rescues the barrier defect in the absence of EGFR, highlighting a therapeutic anchor point. These data reveal that commensal skin microbiota provoke atopic-like inflammatory skin diseases by invading into the follicular opening of erupting hair.


Assuntos
Antineoplásicos/efeitos adversos , Receptores ErbB/antagonistas & inibidores , Cabelo/patologia , Microbiota , Pele/microbiologia , Animais , Epiderme/patologia , Receptores ErbB/deficiência , Fator 7 de Crescimento de Fibroblastos/metabolismo , Humanos , Inflamação/patologia , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Pele/patologia
15.
Nat Immunol ; 20(11): 1435-1443, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591569

RESUMO

Allergic skin diseases, such as atopic dermatitis, are clinically characterized by severe itching and type 2 immunity-associated hypersensitivity to widely distributed allergens, including those derived from house dust mites (HDMs). Here we found that HDMs with cysteine protease activity directly activated peptidergic nociceptors, which are neuropeptide-producing nociceptive sensory neurons that express the ion channel TRPV1 and Tac1, the gene encoding the precursor for the neuropeptide substance P. Intravital imaging and genetic approaches indicated that HDM-activated nociceptors drive the development of allergic skin inflammation by inducing the degranulation of mast cells contiguous to such nociceptors, through the release of substance P and the activation of the cationic molecule receptor MRGPRB2 on mast cells. These data indicate that, after exposure to HDM allergens, activation of TRPV1+Tac1+ nociceptor-MRGPRB2+ mast cell sensory clusters represents a key early event in the development of allergic skin reactions.


Assuntos
Alérgenos/imunologia , Dermatite Atópica/imunologia , Mastócitos/imunologia , Nociceptores/imunologia , Pyroglyphidae/imunologia , Animais , Comunicação Celular/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mastócitos/metabolismo , Camundongos Knockout , Nociceptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Pele/citologia , Pele/imunologia , Canais de Cátion TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
16.
Pharmacol Ther ; 191: 50-64, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29909239

RESUMO

IgE is the antibody isotype found at the lowest concentration in the circulation. However IgE can undeniably play an important role in mediating allergic reactions; best exemplified by the clinical benefits of anti-IgE monoclonal antibody (omalizumab) therapy for some allergic diseases. This review will describe our current understanding of the interactions between IgE and its main receptors FcεRI and CD23 (FcεRII). We will review the known and potential functions of IgE in health and disease: in particular, its detrimental roles in allergic diseases and chronic spontaneous urticaria, and its protective functions in host defense against parasites and venoms. Finally, we will present an overview of the drugs that are in clinical development or have therapeutic potential for IgE-mediated allergic diseases.


Assuntos
Hipersensibilidade/tratamento farmacológico , Imunoglobulina E/imunologia , Omalizumab/administração & dosagem , Animais , Antialérgicos/administração & dosagem , Antialérgicos/farmacologia , Desenvolvimento de Medicamentos/métodos , Humanos , Hipersensibilidade/imunologia , Omalizumab/farmacologia
17.
Clin Immunol ; 192: 30-39, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29608970

RESUMO

To improve current mucosal allergen immunotherapy Vibrio cholerae neuraminidase (NA) was evaluated as a novel epithelial targeting molecule for functionalization of allergen-loaded, poly(D,L-lactide-co-glycolide) (PLGA) microparticles (MPs) and compared to the previously described epithelial targeting lectins wheat germ agglutinin (WGA) and Aleuria aurantia lectin (AAL). All targeters revealed binding to Caco-2 cells, but only NA had high binding specificity to α-L fucose and monosialoganglioside-1. An increased transepithelial uptake was found for NA-MPs in a M-cell co-culture model. NA and NA-MPs induced high levels of IFN-γ and IL10 in naive mouse splenocytes and CCL20 expression in Caco-2. Repeated oral gavage of NA-MPs resulted in a modulated, allergen-specific immune response. In conclusion, NA has enhanced M-cell specificity compared to the other targeters. NA functionalized MPs induce a Th1 and T-regulatory driven immune response and avoid allergy effector cell activation. Therefore, it is a promising novel, orally applied formula for allergy therapy.


Assuntos
Proteínas de Bactérias/imunologia , Hipersensibilidade/imunologia , Fatores Imunológicos/imunologia , Doenças da Boca/imunologia , Neuraminidase/imunologia , Alérgenos/imunologia , Alérgenos/metabolismo , Alérgenos/uso terapêutico , Animais , Proteínas de Bactérias/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Técnicas de Cocultura , Dessensibilização Imunológica/métodos , Humanos , Hipersensibilidade/terapia , Camundongos Endogâmicos BALB C , Microesferas , Doenças da Boca/terapia , Neuraminidase/metabolismo , Ligação Proteica , Vibrio cholerae/enzimologia
18.
PLoS One ; 12(10): e0185704, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982129

RESUMO

Gouty arthritis is caused by the deposition of monosodium urate (MSU) crystals in joints. Despite many treatment options for gout, there is a substantial need for alternative treatments for patients unresponsive to current therapies. Tyrosine kinase inhibitors have demonstrated therapeutic benefit in experimental models of antibody-dependent arthritis and in rheumatoid arthritis in humans, but to date, the potential effects of such inhibitors on gouty arthritis has not been evaluated. Here we demonstrate that treatment with the tyrosine kinase inhibitor imatinib mesylate (imatinib) can suppress inflammation induced by injection of MSU crystals into subcutaneous air pouches or into the ankle joint of wild type mice. Moreover, imatinib treatment also largely abolished the lower levels of inflammation which developed in IL-1R1-/- or KitW-sh/W-sh mice, indicating that this drug can inhibit IL-1-independent pathways, as well as mast cell-independent pathways, contributing to pathology in this model. Imatinib treatment not only prevented ankle swelling and synovial inflammation when administered before MSU crystals but also diminished these features when administrated after the injection of MSU crystals, a therapeutic protocol more closely mimicking the clinical situation in which treatment occurs after the development of an acute gout flare. Finally, we also assessed the efficiency of local intra-articular injections of imatinib-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles in this model of acute gout. Treatment with low doses of this long-acting imatinib:PLGA formulation was able to reduce ankle swelling in a therapeutic protocol. Altogether, these results raise the possibility that tyrosine kinase inhibitors might have utility in the treatment of acute gout in humans.


Assuntos
Artrite Gotosa/prevenção & controle , Mesilato de Imatinib/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Ácido Úrico/efeitos adversos , Animais , Cristalização , Mesilato de Imatinib/administração & dosagem , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/administração & dosagem , Ácido Úrico/química
19.
Cell Metab ; 26(5): 788-800.e6, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28889950

RESUMO

Over the past years, plenty of evidence has emerged illustrating how metabolism supports many aspects of cellular function and how metabolic reprogramming can drive cell differentiation and fate. Here, we present a method to assess the metabolic configuration of single cells within their native tissue microenvironment via the visualization and quantification of multiple enzymatic activities measured at saturating substrate conditions combined with subsequent cell type identification. After careful validation of the approach and to demonstrate its potential, we assessed the intracellular metabolic configuration of different human immune cell populations in healthy and tumor colon tissue. Additionally, we analyzed the intercellular metabolic relationship between cancer cells and cancer-associated fibroblasts in a breast cancer tissue array. This study demonstrates that the determination of metabolic configurations in single cells could be a powerful complementary tool for every researcher interested to study metabolic networks in situ.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Metabolismo Energético , Análise de Célula Única/métodos , Microambiente Tumoral , Animais , Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/enzimologia , Linfócitos T/metabolismo
20.
Trans Am Clin Climatol Assoc ; 128: 193-221, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790503

RESUMO

Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell-derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell's viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcεRI, and probably mast cells contributed to such acquired resistance.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Imunoglobulina E/fisiologia , Mastócitos/fisiologia , Peçonhas/toxicidade , Animais , Anticorpos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA