Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(23): 4528-4541, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37919904

RESUMO

The existence of nontrivial topology is well accepted in globular proteins but not in membrane proteins. Our comprehensive topological analysis of the Protein Data Bank structures reveals 18 families of transmembrane proteins with nontrivial topology, showing that they constitute a significant number of membrane proteins. Moreover, we found that they comprise one of the largest groups of secondary active transporters. We classified them based on their knotted fingerprint into four groups: three slipknotted and one knotted. Unexpectedly, we found that the same protein can possess two distinct slipknot motifs that correspond to its outward- and inward-open conformational state. Based on the analysis of structures and knotted fingerprints, we show that slipknot topology is directly involved in the conformational transition and substrate transfer. Therefore, entanglement can be used to classify proteins and to find their structure-function relationship. Furthermore, based on the topological analysis of the transmembrane protein structures predicted by AlphaFold, we identified new potentially slipknotted protein families.


Assuntos
Proteínas de Membrana Transportadoras , Dobramento de Proteína , Conformação Proteica , Proteínas de Membrana
2.
J Chem Inf Model ; 63(3): 1012-1027, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36693026

RESUMO

Cannabinoid receptor type 2 (CB2) is a very promising therapeutic target for a variety of potential indications. However, despite the existence of multiple high affinity CB2 ligands, none have yet been approved as a drug. Therefore, it would be beneficial to explore new chemotypes of CB2 ligands. The recent elucidation of CB2 tertiary structure allows for rational hit identification with structure-based (SB) methods. In this study, we established a virtual screening workflow based on SB techniques augmented with ligand-based ones, including molecular docking, MM-GBSA binding energy calculations, pharmacophore screening, and QSAR. We screened nearly 7 million drug-like, commercially available compounds. We selected 16 molecules for in vitro evaluation and identified two novel, selective CB2 antagonists with Ki values of 65 and 210 nM. Both compounds are structurally diverse from CB2 ligands known to date. The established virtual screening protocol may prove useful for hit identification for CB2 and similar molecular targets. The two novel CB2 ligands provide a desired starting point for future optimization and development of potential drugs.


Assuntos
Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Ligantes , Simulação de Acoplamento Molecular
3.
PLoS Comput Biol ; 18(11): e1010667, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409737

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused both a health and economic crisis around the world. Its papain-like protease (PLpro) is one of the protein targets utilized in designing new drugs that would aid vaccines in the fight against the virus. Although there are already several potential candidates for a good inhibitor of this protein, the degree of variability of the protein itself is not taken into account. As an RNA virus, SARS-CoV-2 can mutate to a high degree, but PLpro variability has not been studied to date. Based on sequence data available in databases, we analyzed the mutational potential of this protein. We focused on the effect of observed mutations on inhibitors' binding mode and their efficacy as well as protein's activity. Our analysis identifies five mutations that should be monitored and included in the drug design process: P247S, E263D-Y264H and T265A-Y268C.


Assuntos
Aminoácidos , COVID-19 , Humanos , SARS-CoV-2/genética , Proteases Semelhantes à Papaína de Coronavírus/genética , Papaína/química , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo
4.
ACS Chem Neurosci ; 13(20): 2991-3007, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197801

RESUMO

Cannabinoid receptor type 1 (CB1) is an important modulator of many key physiological functions and thus a compelling molecular target. However, safe CB1 targeting is a non-trivial task. In recent years, there has been a surge of data indicating that drugs successfully used in the clinic for years (e.g. paracetamol) show CB1 activity. Moreover, there is a lot of promise in finding CB1 ligands in plants other than Cannabis sativa. In this study, we searched for possible CB1 activity among already existing drugs, their metabolites, phytochemicals, and natural-like molecules. We conducted two iterations of virtual screening, verifying the results with in vitro binding and functional assays. The in silico procedure consisted of a wide range of structure- and ligand-based methods, including docking, molecular dynamics, and quantitative structure-activity relationship (QSAR). As a result, we identified travoprost and ginkgetin as CB1 ligands, which provides a starting point for future research on the impact of their metabolites or preparations on the endocannabinoid system. Moreover, we found five natural-like compounds with submicromolar or low micromolar affinity to CB1, including one mixed partial agonist/antagonist viable for hit-to-lead phase. Finally, the computational procedure established in this work will be of use for future screening campaigns for novel CB1 ligands.


Assuntos
Acetaminofen , Endocanabinoides , Ligantes , Travoprost , Compostos Fitoquímicos/farmacologia , Receptores de Canabinoides , Receptor CB1 de Canabinoide
5.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921228

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes the papain-like protease (PLpro). The protein not only plays an essential role in viral replication but also cleaves ubiquitin and ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from host proteins, making it an important target for developing new antiviral drugs. In this study, we searched for novel, noncovalent potential PLpro inhibitors by employing a multistep in silico screening of a 15 million compound library. The selectivity of the best-scored compounds was evaluated by checking their binding affinity to the human ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which, as a deubiquitylating enzyme, exhibits structural and functional similarities to the PLpro. As a result, we identified 387 potential, selective PLpro inhibitors, from which we retrieved the 20 best compounds according to their IC50 values toward PLpro estimated by a multiple linear regression model. The selected candidates display potential activity against the protein with IC50 values in the nanomolar range from approximately 159 to 505 nM and mostly adopt a similar binding mode to the known, noncovalent SARS-CoV-2 PLpro inhibitors. We further propose the six most promising compounds for future in vitro evaluation. The results for the top potential PLpro inhibitors are deposited in the database prepared to facilitate research on anti-SARS-CoV-2 drugs.


Assuntos
Antivirais/química , Antivirais/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , SARS-CoV-2/enzimologia , Animais , Antivirais/toxicidade , Simulação por Computador , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Dose Letal Mediana , Ligantes , Testes de Mutagenicidade , Inibidores de Proteases/toxicidade , Relação Quantitativa Estrutura-Atividade , Ratos , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
6.
PLoS Comput Biol ; 16(5): e1007904, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453784

RESUMO

S-adenosylmethionine (SAM) is one of the most important enzyme substrates. It is vital for the function of various proteins, including large group of methyltransferases (MTs). Intriguingly, some bacterial and eukaryotic MTs, while catalysing the same reaction, possess significantly different topologies, with the former being a knotted one. Here, we conducted a comprehensive analysis of SAM conformational space and factors that affect its vastness. We investigated SAM in two forms: free in water (via NMR studies and explicit solvent simulations) and bound to proteins (based on all data available in the PDB and on all-atom molecular dynamics simulations in water). We identified structural descriptors-angles which show the major differences in SAM conformation between unknotted and knotted methyltransferases. Moreover, we report that this is caused mainly by a characteristic for knotted MTs compact binding site formed by the knot and the presence of adenine-binding loop. Additionally, we elucidate conformational restrictions imposed on SAM molecules by other protein groups in comparison to conformational space in water.


Assuntos
Sítios de Ligação , Metionina Adenosiltransferase/química , S-Adenosilmetionina/química , Adenina/química , Motivos de Aminoácidos , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Glicina/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Solventes , Temperatura , Água/química , tRNA Metiltransferases/química
7.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316328

RESUMO

The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands' synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.


Assuntos
Desenho de Fármacos , Receptores de Canabinoides/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Receptores de Canabinoides/química , Convulsões/tratamento farmacológico , Convulsões/metabolismo
8.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347655

RESUMO

Here we present new derivatives of nucleoside reverse transcriptase inhibitors with a C20 fullerene. The computational chemistry methods used in this study evaluate affinity of designed compounds towards the HIV-1 reverse transcriptase (RT) binding site and select the most active ones. The best of the designed compounds have superior or similar affinity to RT active site in comparison to most active test compounds, including drugs used in anti-HIV therapy.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Fulerenos/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Transcriptase Reversa do HIV/química , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA