Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 15(1): 105-13, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9933520

RESUMO

Two different types of immobilized yeast bioreactors were examined for continuous fermentation of high-gravity worts. One of these is a fluidized bed reactor (FBR) that employs porous glass beads for yeast immobilization. The second system is a loop reactor containing a porous silicon carbide cartridge (SCCR) for immobilizing the yeast cells. Although there was some residual fermentable sugar in the SCCR system product, nearly complete attenuation of the wort sugars was achieved in either of the systems when operated as a two-stage process. Fermentation could be completed in these systems in only half the time required for a conventional batch process. Both the systems showed similar kinetics of extract consumption, and therefore similar volumetric productivity. As compared to the batch fermentation, total fusel alcohols were lower; total esters, while variable, were generally higher. The yeast biomass production was similar to that in a conventional fermentation process. As would be expected in an accelerated fermentation system, the levels of vicinal diketones (VDKs) were higher. To remove the VDKs, the young beer was heat-treated to convert the VDK precursors and processed through a packed bed immobilized yeast bioreactor for VDK assimilation. The finished product from the FBR system was found to be quite acceptable from a flavor perspective, albeit different from the product from a conventional batch process. Significantly shortened fermentation times demonstrate the feasibility of this technology for beer production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA