Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Microbiol ; 24(12): 6376-6391, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35837848

RESUMO

Burgundy truffles are heterothallic ascomycetes that grow in symbiosis with trees. Despite their esteemed belowground fruitbodies, the species' complex lifecycle is still not fully understood. Here, we present the genetic patterns in three natural Burgundy truffle populations based on genotyped fruitbodies, ascospore extracts and ectomycorrhizal root tips using microsatellites and the mating-type locus. Distinct genetic structures with high relatedness in close vicinity were found for females (forming the fruitbodies) and males (fertilizing partner as inferred from ascospore extracts), with high genotypic diversity and annual turnover of males, suggesting that ephemeral male mating partners are germinating ascospores from decaying fruitbodies. The presence of hermaphrodites and the interannual persistence of a few males suggest that persistent mycelia may sporadically also act as males. Only female or hermaphroditic individuals were detected on root tips. At one site, fruitbodies grew in a fairy ring formed by a large female individual that showed an outward growth rate of 30 cm per year, with the mycelium decaying within the ring and being fertilized by over 50 male individuals. While fairy ring structures have never been shown for truffles, the genetics of Burgundy truffle populations support a similar reproductive biology as those of other highly prized truffles.


Assuntos
Ascomicetos , Micorrizas , Humanos , Masculino , Animais , Ascomicetos/genética , Micorrizas/genética , Simbiose , Estágios do Ciclo de Vida
4.
Sci Rep ; 11(1): 3541, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574430

RESUMO

Backbone N-methylation and macrocyclization improve the pharmacological properties of peptides by enhancing their proteolytic stability, membrane permeability and target selectivity. Borosins are backbone N-methylated peptide macrocycles derived from a precursor protein which contains a peptide α-N-methyltransferase domain autocatalytically modifying the core peptide located at its C-terminus. Founding members of borosins are the omphalotins from the mushroom Omphalotus olearius (omphalotins A-I) with nine out of 12 L-amino acids being backbone N-methylated. The omphalotin biosynthetic gene cluster codes for the precursor protein OphMA, the protease prolyloligopeptidase OphP and other proteins that are likely to be involved in other post-translational modifications of the peptide. Mining of available fungal genome sequences revealed the existence of highly homologous gene clusters in the basidiomycetes Lentinula edodes and Dendrothele bispora. The respective borosins, referred to as lentinulins and dendrothelins are naturally produced by L. edodes and D. bispora as shown by analysis of respective mycelial extracts. We produced all three homologous peptide natural products by coexpression of OphMA hybrid proteins and OphP in the yeast Pichia pastoris. The recombinant peptides differ in their nematotoxic activity against the plant pathogen Meloidogyne incognita. Our findings pave the way for the production of borosin peptide natural products and their potential application as novel biopharmaceuticals and biopesticides.


Assuntos
Metiltransferases/genética , Peptídeo Hidrolases/genética , Peptídeos Cíclicos/genética , Peptídeos/genética , Agaricales/genética , Animais , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/genética , Metilação , Proteólise , Saccharomycetales/genética , Cogumelos Shiitake/genética , Tylenchoidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA