Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741827

RESUMO

Heterozygous variants in the NPR2 gene, which encodes the B-type natriuretic peptide receptor (NPR-B), a regulator of skeletal growth, were reported in 2-6% cases of idiopathic short stature (ISS). Using next-generation sequencing (NGS), we aimed to assess the frequency of NPR2 variants in our study cohort consisting of 150 children and adolescents with ISS, describe the NPR2 phenotypic spectrum with a growth pattern including birth data, and study the response to growth hormone (GH) treatment. A total of ten heterozygous pathogenic/likely pathogenic NPR2 variants and two heterozygous NPR2 variants of uncertain significance were detected in twelve participants (frequency of causal variants: 10/150, 6.7%). During follow-up, the NPR2 individuals presented with a growth pattern varying from low-normal to significant short stature. A clinically relevant increase in BMI (a mean gain in the BMI SDS of +1.41), a characteristic previously not reported in NPR2 individuals, was observed. In total, 8.8% participants born small for their gestational age (SGA) carried the NPR2 causal variant. The response to GH treatment was variable (SDS height gain ranging from -0.01 to +0.74). According to the results, NPR2 variants present a frequent cause of ISS and familial short stature. Phenotyping variability in growth patterns and variable responses to GH treatment should be considered.


Assuntos
Nanismo , Receptores do Fator Natriurético Atrial , Adolescente , Estatura/genética , Criança , Nanismo/tratamento farmacológico , Nanismo/genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Receptores do Fator Natriurético Atrial/genética
2.
Genes (Basel) ; 12(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680940

RESUMO

Short stature is a common growth disorder defined as a body height two standard deviations (SD) or more below the mean for a given age, gender, and population. A large part of the cases remains unexplained and is referred to as having idiopathic short stature (ISS). One of the leading genetic causes of short stature is variants of short stature homeobox-containing gene (SHOX) and is considered to be responsible for 2-15% of ISS. We aimed to analyse the regulatory and coding region of SHOX in Slovenian children and young adults with ISS and to investigate the pathogenicity of detected variants. Our cohort included 75 children and young adults with ISS. Multiplex ligation-dependent probe amplification (MLPA) was performed in all participants for the detection of larger copy number variations (CNVs). Sanger sequencing was undertaken for the detection of point variants, small deletions, and insertions. A total of one deletion and two duplications were discovered using the MLPA technique. Only one of these four variants was identified as disease-causing and occurred in one individual, which represents 1.3% of the cohort. With Sanger sequencing, two variants were discovered, but none of them appeared to have a pathogenic effect on height. According to the results, in the Slovenian population of children and young adults with ISS, SHOX deficiency is less frequent than expected considering existing data from other populations.


Assuntos
Nanismo/genética , Proteína de Homoeobox de Baixa Estatura/genética , Adolescente , Criança , Pré-Escolar , Feminino , Deleção de Genes , Duplicação Gênica , Frequência do Gene , Humanos , Masculino , Eslovênia , Adulto Jovem
3.
Mol Cytogenet ; 10: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344653

RESUMO

BACKGROUND: The majority of small supernumerary marker chromosome cases arise de novo and their frequency in newborns is 0.04%. We report on a girl with developmental delay and dysmorphic features with a non-mosaic de novo sSMC that originated from the pericentric region of q arm in chromosome 17. CASE PRESENTATION: The girl presented with developmental delay, speech delay, myopia, mild muscle hypotonia, hypoplasia of orbicular muscle, poor concentration, and hyperactivity. Main dysmorphic features included: round face, microstomia, small chin, down-slanting palpebral fissures and small lobules of both ears. At present, her developmental abilities are still delayed for her chronological age but she is making evident progress with speech. A postnatal array comparative genomic hybridization showed a 2.31 Mb genomic gain indicating microduplication derived from pericentric regions q11.1 and q11.2 of chromosome 17. Additional conventional cytogenetic analysis from peripheral blood characterized the karyotype as 47,XX,+mar in a non-mosaic form. The location of microduplication was confirmed with fluorescence in situ hybridization. CONCLUSION: The proband's microduplication encompassed approximately 40 annotated genes, several of which have been associated with phenotypic characteristics of the proband. This is the first report of sSMC 17 including this particular chromosomal region in non-mosaic form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA