Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153227

RESUMO

BACKGROUND: Magnetic resonance (MR) imaging devices have been integrated with medical linear accelerators (linac) in radiation therapy. Both perpendicular linac-MR (LMR-B⊥) and parallel (LMR-B∥) systems exist, where due to the MR's magnetic field dose can be perturbed in the patient. Dose perturbations from the electron return effect (ERE) and electron streaming effects (ESEs) are present in LMR-B⊥ systems, where a dose collimating effect has been observed in LMR-B∥ systems . PURPOSE: To report on an asymmetric dose perturbation which is present at the interface between two different materials during treatment in parallel linac-MR (LMR-B∥) systems. To the best of our knowledge, these asymmetric dose effects, "Lateral Scattered Electron Return Effect" (LS-ERE) have not been previously reported. METHODS: BEAMnrc and EGSnrc Monte Carlo (MC) radiation transport codes were used with the EEMF macro to emulate a 6 FFF beam from the 0.5-T Alberta linac-MR (LMR). Simulations were performed at 0.5 and 1.5 T in several different phantom material-interface combinations and field sizes including from modulated MLC-like fields. MC simulations quantified LS-ERE in patient CT datasets for the head, breast, and lung. LS-ERE cancellation techniques were investigated. LS-ERE asymmetries were quantified by subtracting an antiparallel dose from the parallel dose, dividing by two and normalizing to the global 0-T maximum dose. GafChromic film measurements were made in the 0.5-T Alberta LMR-B∥ system using solid water at the water-air interface to validate MC simulations. ERE was simulated for an emulated LMR-B⊥ system and compared to LMR-B∥ dose perturbations. RESULTS: LS-ERE is mostly independent of field size for fields >1 × 1 cm2. For 5 × 5-cm2 fields at 0.5T/1.5T, LS-ERE asymmetries are ≤±6.9%/6.9% at bone-air and ≤±9.0%/7.0% at tissue-air for nonair doses, and ≤±4.1%/5.5% at tissue-lung interfaces. LS-ERE increases as the density gradient increases, where the magnitude and extent of LS-ERE are reduced as field strength increases. For a single 5 × 5-cm2 field at 0.5T/1.5T, the LS-ERE asymmetry is ≤±10.2%/8.5% at the tissue-air sinus interface for head, ≤±4.2%/5.3% at the spine-lung interface for the lung, and ≤±5.7%/4.9% at the skin-air interface for a breast tangent plan at 0.5T/1.5T. POP fields mostly remove LS-ERE asymmetries, with magnetic field reversal during treatment being the most effective method. Skin dose was investigated and compared to 0-T treatments for 0.5T/1.5T LMR-B∥ single field breast and head treatments. Including all dosimetric magnetic field perturbations, a 21%/24% and 22%/22% increase in skin dose to head and breast, respectively, was observed, of which LS-ERE is responsible for approximately 30% of the total. Measured LS-ERE asymmetries and dose enhancements at the water-air interface using GafChromic film were in excellent agreement with MC simulations. ERE in 1.5-T LMR-B⊥ systems are on average 5.5 times larger than total dose perturbations at 0.5 T in LMR-B∥ systems. CONCLUSION: LS-ERE is present at the interface between materials and awareness of LS-ERE is crucial for proper TPS evaluation for LMR-B∥ treatments, especially in areas where large tissue density gradients exist.

2.
Biomed Phys Eng Express ; 9(6)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37657420

RESUMO

Purpose. To construct a fast-calculating fluence modelfor the Siemens HD120 multi leaf collimator (MLC) using convolution-superposition techniques, and to develop a 3D VMAT dose engine using this fluence model.  This work offers analternative to time-consuming open-source Monte Carlo simulations for thosedeveloping in-house dose-calculating software for research or clinical needs.Methods. EPID-acquired images of sweeping-window and sweeping-checker field profiles were used to commission transmission, 2 Dinterleaf leakage, and tongue-and-groove maps specific to the HD120 MLC.  These maps, along with a 2D head-scattermodel were incorporated into a convolution-superposition algorithm to provide a fluence model for the HD120 MLC. This fluence model was used to develop a 3D VMAT dose engine, where 3D pre-computed 6MV dose kernels (EGSnrc) and a 3D fluence curvature-correction map were incorporatedto calculate 3D VMAT doses in a 22 cm diameter cylindrical phantom. Four VMAT patient plans witha large range of PTV sizes (36 cc to 604 cc) were chosen to test the fluence model and dose engine.Results. Excellent agreement was observed between the simulated commissioning fields and measured EPID-responses. 2D 2%/2 mm gamma analysis yielded a 98.9% pass rate for 1 cm, 2 cm, and 4 cm sweeping-window fields. 2D 2%/2mm gamma analysis for outer/inner MLC leaves yielded 89.1%/77.0% and 95.2%/91.1% pass rates from 1 cm and 2 cm sweeping-checker fields. Mean 3%/3 mm gamma analysis showed excellent agreement between our dose engine and Eclipse (Acuros) regardless of PTV size: 98.7% pass rate, with 95.1% pass rate in the high-dose volume.  Fluence calculation times were13.6 seconds per dynamic MLC field and 1.4 minutes/arc for 3D VMAT dose on a standard PC. Conclusions. A fast-calculating convolution-superposition fluence model has been commissioned for the Siemens HD120 MLC and incorporatedinto a 3D VMAT dose engine.  This work can be used to facilitate the development of fast in-house dose-calculating software.


Assuntos
Algoritmos , Humanos , Imagens de Fantasmas , Membrana Celular , Raios gama , Método de Monte Carlo
3.
Med Phys ; 46(1): 340-344, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417382

RESUMO

PURPOSE: Electronic portal imaging devices (EPIDs) are potentially useful for dosimetric verification in integrated MRI-linac systems. This work presents the reproducibility, linearity, image lag, and radiation field profiles in a conventional EPID, with and without a 0.5 T parallel magnetic field present in a 6 MV photon beam. METHODS: An aS500 EPID was modified to function in strong magnetic fields. All measurements were made using the linac-MR installed at the Cross Cancer Institute. The EPID remained stationary on the couch between the measurements made with and without magnetic field. We measured short-term reproducibility of dark and flood fields, signal linearity from 1 to 500 MU irradiations, and image lag post 100 MU irradiation. An ion chamber was used to measure any linac output variations to correct the EPID signal due to these variations for the duration of experiment. X-axis and Y-axis radiation field profiles were obtained from the EPID image resulting from a 10 × 10 cm2 radiation field delivery. RESULTS: The average pixel value (±standard deviation) of flood field with and without magnetic fields were 57,876 ± 379 and 57,703 ± 366, respectively, and the corresponding average dark field pixel values were -32.05 ± 0.85 and -32.19 ± 0.97. The maximum difference in image linearity data with and without magnetic field is 0.2% which is well within the measurement uncertainty of 0.65%. Similarly, the image lag curves, with and without the magnetic field, were nearly identical. The first measured point, with mean lag signal of 1.44% without and 1.41% with magnetic field, shows that the largest difference is well below the uncertainty in the EPID signal measurement. The radiation field profiles obtained with and without magnetic fields were nearly identical; 91.3% of the X-axis and 95.2% of the Y-axis profile points pass a gamma criterion of 1% and 1 mm. CONCLUSIONS: A conventional EPID imager with a 0.1 cm copper plate responds to 6 MV photons similarly irrespective of the strong magnetic field being off or on in the parallel orientation to the radiation beam. Thus, the EPID is a potentially useful tool for pretreatment dosimetric verification in linac-MR systems using parallel magnetic field.


Assuntos
Equipamentos e Provisões Elétricas , Campos Magnéticos , Fótons , Desenho de Equipamento
5.
Med Phys ; 44(9): 4804-4815, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28626920

RESUMO

PURPOSE: Integrating a linac with a magnetic resonance imager (MRI) will revolutionize the accuracy of external beam radiation treatments. Irradiating in the presence of a strong magnetic field, however, will modify the dose distribution. These dose modifications have been investigated previously, mainly using Monte Carlo simulations. The purpose of this work is to experimentally verify the use of the EGSnrc Monte Carlo (MC) package for calculating percent depth doses (PDDs) in a homogeneous phantom, in the presence of a realistic parallel magnetic field. METHODS: Two cylindrical electromagnets were used to produce a 0.207 T magnetic field parallel to the central axis of a 6 MV photon beam from a clinical linac. The magnetic field was measured at discrete points along orthogonal axes, and these measurements were used to validate a full 3D magnetic field map generated using COMSOL Multiphysics. Using a small parallel plate ion chamber, the depth dose was measured in a polystyrene phantom placed inside the electromagnet bore at two separate locations: phantom top surface coinciding with top of bore, and phantom top surface coinciding with center of bore. BEAMnrc MC was used to model the linac head which was benchmarked against the linac's commissioning measurements. The depth dose in polystyrene was simulated using DOSXYZnrc MC. For the magnetic field case, the DOSXYZnrc code was slightly modified to implement the previously calculated 3D magnetic field map to be used in the standard electromagnetic macros. RESULTS: The calculated magnetic field matched the measurements within 2% of the maximum central field (0.207 T) with most points within the experimental uncertainty (1.5%). For the MC linac head model, over 93% of all simulated points passed the 2%, 2 mm γ acceptance criterion, when comparing measured and simulated lateral beam and depth dose profiles. The parallel magnetic field caused a surface dose increase, compared to the no magnetic field case, due to the Lorentz force confining contaminant electrons within the beam. The surface dose increase was measured to be approximately 10% (relative to no field Dmax ) when the phantom surface coincided with the top of the electromagnet's bore. This effect was enhanced by moving the phantom surface to the center of the magnet's bore in relatively high magnetic field (> 0.13 T). The surface dose for this setup increased by 30% and the entire buildup region was affected. When the dimensions and composition of the ion chamber air cavity and entrance window were included, EGSnrc was able to accurately simulate these dose increases, both at the surface and in the buildup region. All the simulated points were within 1% of the measurements for both setups. The ferromagnetic linac head was determined to have a negligible effect on the final PDD comparison. CONCLUSIONS: Irradiating in the presence of a parallel magnetic field causes measurable surface and buildup depth dose increases. We have experimentally verified that the EGSnrc Monte Carlo package is able to accurately calculate the PDDs with these surface and buildup dose modifications in a homogeneous phantom.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Doses de Radiação , Humanos , Imagens de Fantasmas , Poliestirenos
6.
Med Phys ; 44(6): 2124-2131, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28393372

RESUMO

PURPOSE: To modify a previously designed, short, 10 MV linac waveguide, so that it can produce any energy from 4 to 10 MV. The modified waveguide is designed to be a drop-in replacement for the 6 MV waveguide used in the author's current linear accelerator-magnetic resonance imager (Linac-MR). METHODS: Using our group's previously designed short 10 MV linac as a starting point, the port was moved to the fourth cavity, the shift to the first coupling cavity was removed and a tuning cylinder added to the first coupling cavity. Each cavity was retuned using finite element method (FEM) simulations to resonate at the desired frequency. FEM simulations were used to determine the RF field distributions for various tuning cylinder depths, and electron trajectories were computed using a particle-in-cell model to determine the required RF power level and tuning cylinder depth to produce electron energy distributions for 4, 6, 8, and 10 MV photon beams. Monte Carlo simulations were then used to compare the depth dose profiles with those produced by published electron beam characteristics for Varian linacs. RESULTS: For each desired photon energy, the electron beam energy was within 0.5% of the target mean energy, the depth of maximum dose was within 1.5 mm of that produced by the Varian linac, and the ratio of dose at 10 cm depth to 20 cm depth was within 1%. CONCLUSIONS: A new 27.5 cm linear accelerator waveguide design capable of producing any photon energy between 4 and 10 MV has been simulated, however coupling port design and the implications of increased electron beam current at 10 MV remain to be investigated. For the specific cases of 4, 6, and 10 MV, this linac produces depth dose profiles similar to those produced by published spectra for Varian linacs.


Assuntos
Elétrons , Aceleradores de Partículas , Fótons , Humanos , Método de Monte Carlo
7.
J Appl Clin Med Phys ; 14(6): 4274, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24257271

RESUMO

This work outlines the development of a robust method of calculating modulation factors used for the independent verification of MUs for IMRT and VMAT treatments, to replace onerous ion chamber measurements. Two-dimensional fluence maps were calculated for dynamic MLC fields that include MLC interleaf leakage, transmission, and tongue-and-groove effects, as characterized from EPID-acquired images. Monte Carlo-generated dose kernels were then used to calculate doses for a modulated field and that field with the modulation removed at a depth specific to the calculation point in the patient using in-house written software, Mod_Calc. The ratio of these two doses was taken to calculate modulation factors. Comparison between Mod_Calc calculation and ion chamber measurement of modulation factors for 121 IMRT fields yielded excellent agreement, where the mean difference between the two was -0.3% ± 1.2%. This validated use of Mod_Calc clinically. Analysis of 5,271 dynamic fields from clinical use of Mod_Calc gave a mean difference of 0.3% ± 1.0% between Mod_Calc and Eclipse-generated factors. In addition, 99.3% and 96.5% fields pass 5% and 2% criteria, respectively, for agreement between these two predictions. The development and use of Mod_Calc at our clinic has considerably streamlined our QA process for IMRT and RapidArc fields, compared to our previous method based on ion chamber measurements. As a result, it has made it feasible to maintain our established and trusted current in-house method of MU verification, without resorting to commercial software alternatives.


Assuntos
Modelos Teóricos , Neoplasias/radioterapia , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Algoritmos , Simulação por Computador , Equipamentos e Provisões Elétricas , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
8.
J Appl Clin Med Phys ; 13(4): 3753, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22766945

RESUMO

The purpose of this study is to evaluate the accuracy and precision of the Clarity 3D ultrasound system to track prostate gland positional variations due to setup error and organ motion. Seventeen patients (n = 17) undergoing radical external beam radiation therapy for localized prostate cancer were studied. Subsequent to initial reference ultrasound and planning CT scans, each patient underwent seven repeat weekly tracking CT and ultrasound (US) scans during the course of treatment. Variations in the location of the prostate between reference and tracking scans were measured. Differences reported by CT and ultrasound scans are compared. Ultrasound tracking was initially performed clinically by a group of trained general users. Retrospective prostate localization was then performed by a trained dedicated user upon the original raw data set and also a reduced data set derived from the original by an expert user from Resonant Medical. Correlation accuracy between ultrasound and CT shifts acquired and delineated by a pool of trained general users was deemed unacceptable for radiotherapy purposes. A mean discrepancy between CT and US localizations of greater than 10 mm, with a 5 mm or greater discrepancy rate of nearly 90%, was observed. Retrospective analysis by a dedicated user of both the original and Resonant Medical reduced data sets yielded mean CT-Us discrepancies of 8.7 mm and 7.4 mm, respectively. Unfortunately, the 5 mm or greater CT-US discord rate for these retrospective analyses failed to drop below 80%. The greatest disparity between CT and ultrasound was consistently observed in the superior-inferior direction, while greatest agreement was achieved in the lateral dimension. Despite an expert reanalysis of the original data, the Clarity ultrasound system failed to deliver an acceptable level of geometric accuracy required for modern radiotherapy purposes.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Humanos , Masculino , Radioterapia Guiada por Imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Ultrassom , Ultrassonografia
9.
Med Phys ; 37(2): 466-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20229855

RESUMO

PURPOSE: The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. METHODS: For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. RESULTS: With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. CONCLUSIONS: A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.


Assuntos
Aceleradores de Partículas/instrumentação , Radioterapia de Alta Energia/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA