Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Heart Assoc ; 11(17): e026143, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36000426

RESUMO

Background Published randomized controlled trials are underpowered for binary clinical end points to assess the safety and efficacy of renin-angiotensin system inhibitors (RASi) in adults with COVID-19. We therefore performed a meta-analysis to assess the safety and efficacy of RASi in adults with COVID-19. Methods and Results MEDLINE, EMBASE, ClinicalTrials.gov, and the Cochrane Controlled Trial Register were searched for randomized controlled trials that randomly assigned patients with COVID-19 to RASi continuation/commencement versus no RASi therapy. The primary outcome was all-cause mortality at ≤30 days. A total of 14 randomized controlled trials met the inclusion criteria and enrolled 1838 participants (aged 59 years, 58% men, mean follow-up 26 days). Of the trials, 11 contributed data. We found no effect of RASi versus control on all-cause mortality (7.2% versus 7.5%; relative risk [RR], 0.95; [95% CI, 0.69-1.30]) either overall or in subgroups defined by COVID-19 severity or trial type. Network meta-analysis identified no difference between angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers. RASi users had a nonsignificant reduction in acute myocardial infarction (2.1% versus 3.6%; RR, 0.59; [95% CI, 0.33-1.06]), but increased risk of acute kidney injury (7.0% versus 3.6%; RR, 1.82; [95% CI, 1.05-3.16]), in trials that initiated and continued RASi. There was no increase in need for dialysis or differences in congestive cardiac failure, cerebrovascular events, venous thromboembolism, hospitalization, intensive care admission, inotropes, or mechanical ventilation. Conclusions This meta-analysis of randomized controlled trials evaluating angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers versus control in patients with COVID-19 found no difference in all-cause mortality, a borderline decrease in myocardial infarction, and an increased risk of acute kidney injury with RASi. Our findings provide strong evidence that RASi can be used safely in patients with COVID-19.


Assuntos
Injúria Renal Aguda , COVID-19 , Hipertensão , Infarto do Miocárdio , Injúria Renal Aguda/induzido quimicamente , Adulto , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Anti-Hipertensivos/uso terapêutico , Feminino , Humanos , Masculino , Infarto do Miocárdio/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema Renina-Angiotensina
2.
Sci Rep ; 12(1): 14280, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995819

RESUMO

Antagonism of the angiotensin II type 1 receptor (AT1) improves neurological function and reduces brain damage after experimental traumatic brain injury (TBI), which may be partly a result of enhanced indirect angiotensin II type 2 receptor (AT2) stimulation. AT2 stimulation was demonstrated to be neuroprotective via anti-inflammatory, vasodilatory, and neuroregenerative mechanisms in experimental cerebral pathology models. We recently demonstrated an upregulation of AT2 after TBI suggesting a protective mechanism. The present study investigated the effect of post-traumatic (5 days after TBI) AT2 activation via high and low doses of a selective AT2 agonist, compound 21 (C21), compared to vehicle-treated controls. No differences in the extent of the TBI-induced lesions were found between both doses of C21 and the controls. We then tested AT2-knockdown animals for secondary brain damage after experimental TBI. Lesion volume and neurological outcomes in AT2-deficient mice were similar to those in wild-type control mice at both 24 h and 5 days post-trauma. Thus, in contrast to AT1 antagonism, AT2 modulation does not influence the initial pathophysiological mechanisms of TBI in the first 5 days after the insult, indicating that AT2 plays only a minor role in the early phase following trauma-induced brain damage.


Assuntos
Lesões Encefálicas Traumáticas , Receptor Tipo 2 de Angiotensina , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/patologia , Imidazóis/farmacologia , Masculino , Camundongos , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina/metabolismo , Sulfonamidas/farmacologia , Tiofenos/farmacologia
3.
Front Immunol ; 13: 921488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874732

RESUMO

The angiotensin AT2 receptor (AT2R) is a main receptor of the protective arm of the renin-angiotensin system and exerts for instance anti-inflammatory effects. The impact of AT2R stimulation on autoimmune diseases such as rheumatoid arthritis (RA) is not yet known. We investigated the therapeutic potential of AT2R-stimulation with the selective non-peptide AT2R agonist Compound 21 (C21) in collagen-induced arthritis (CIA), an animal model for inflammatory arthritis. Arthritis was induced by immunization of DBA/1J mice with collagen type II (CII). Prophylactic and therapeutic C21 treatment alleviates arthritis severity and incidence in CIA. Joint histology revealed significantly less infiltrates of IL-1 beta and IL-17A expressing cells and a well-preserved articular cartilage in C21- treated mice. In CIA, the number of CD4+CD25+FoxP3+ regulatory T (Treg) cells significantly increased upon C21 treatment compared to vehicle. T cell differentiation experiments demonstrated increased expression of FoxP3 mRNA, whereas IL-17A, STAT3 and IFN-gamma mRNA expression were reduced upon C21 treatment. In accordance with the mRNA data, C21 upregulated the percentage of CD4+FoxP3+ cells in Treg polarizing cultures compared to medium-treated controls, whereas the percentage of CD4+IL-17A+ and CD4+IFN-gamma+ T cells was suppressed. To conclude, C21 exerts beneficial effects on T cell-mediated experimental arthritis. We found that C21-induced AT2R-stimulation promotes the expansion of CD4+ regulatory T cells and suppresses IL-17A production. Thus, AT2R-stimulation may represent an attractive treatment strategy for arthritis.


Assuntos
Artrite Experimental , Receptor Tipo 2 de Angiotensina , Linfócitos T Reguladores , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Imidazóis , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos DBA , RNA Mensageiro/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sulfonamidas , Linfócitos T Reguladores/imunologia , Tiofenos , Regulação para Cima
4.
Clin Sci (Lond) ; 135(24): 2763-2780, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34854902

RESUMO

The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-ß1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented ß-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-ß1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Imidazóis/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Rigidez Vascular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Colágeno/metabolismo , Masculino , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Fator de Crescimento Transformador beta1/sangue
5.
Mult Scler Relat Disord ; 53: 103033, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090131

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated autoimmune inflammatory disease of the central nervous system (CNS), resulting in primary astrocytopathy. We have previously shown that Angiotensin AT2-receptor (AT2R) stimulation with the specific agonist Compound 21 (C21) attenuated NMOSD-like pathology. Recent studies have proposed that the mechanism behind protective effects of AT2R includes induction of brain derived neurotrophic factor (BDNF). Astrocytes are a major cellular source of BDNF. In this study we used mice with conditional BDNF deficiency in astrocytes (GfapF) to examine the involvement of astrocyte-derived BDNF in NMOSD-like pathology and in mediating the protective effect of AT2R stimulation. METHODS: Anti-aquaporin-4 IgG (AQP4-IgG) from an NMOSD patient and human complement (C) were co-injected intrastriatally to GfapF and wildtype littermate BDNFfl/fl mice (WT), together with either C21 or vehicle at day 0, followed by intrathecal injection of C21 or vehicle at day 2 and tissue collection at day 4. RESULTS: Intracerebral/intrathecal injection of C21, alone or in combination with AQP4-IgG + C, induced BDNF expression in WT mice. Injection of AQP4-IgG + C induced NMOSD-like pathology, including loss of AQP4 and GFAP. There was no difference in the severity of pathological changes between GfapF and WT mice. C21 treatment significantly and equally ameliorated NMOSD-like pathology in both WT and GfapF mice. CONCLUSION: Our findings indicate that astrocyte-derived BDNF neither reduces the severity of NMOSD-like pathology nor is it necessary for the protective effect of AT2R stimulation in NMOSD-like pathology.


Assuntos
Neuromielite Óptica , Angiotensinas , Animais , Aquaporina 4/genética , Astrócitos , Autoanticorpos , Fator Neurotrófico Derivado do Encéfalo , Humanos , Camundongos , Neuromielite Óptica/tratamento farmacológico , Receptor Tipo 2 de Angiotensina/genética
6.
Clin Sci (Lond) ; 135(9): 1145-1163, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33899912

RESUMO

Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Imidazóis/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor B2 da Bradicinina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/uso terapêutico , Tiofenos/uso terapêutico , Doenças Vasculares/prevenção & controle , Animais , Aorta Torácica/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo
7.
BMJ Open ; 11(2): e043625, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593784

RESUMO

INTRODUCTION: Whether ACE inhibitors (ACEi) or angiotensin II receptor blocker (ARB) therapy should be continued, initiated or ceased in patients with COVID-19 is uncertain. Given the widespread use of ACEi/ARBs worldwide, guidance on the use of these drugs is urgently needed. This prospective meta-analysis aims to pool data from randomised controlled trials (RCTs) to assess the safety and efficacy of ACEi/ARB therapy in adults infected with SARS-CoV-2. METHODS AND ANALYSIS: RCTs will be eligible if they compare patients with COVID-19 randomised to ACEi/ARB continuation or commencement versuss no ACEi/ARB therapy; study duration ≥14 days; recruitment completed between March 2020 and May 2021. The primary outcome will be all-cause mortality at ≤30 days. Secondary outcomes will include mechanical ventilation, admission to intensive care or cardiovascular events at short-term follow-up (≤30 days) and all-cause mortality at longer-term follow-up (>1 month). Prespecified subgroup analyses will assess the effect of sex; age; comorbidities; smoking status; ethnicity; country of origin on all-cause mortality. A search of ClinicalTrials.gov has been performed, which will be followed by a formal search of trial registers, preprint servers, MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials to identify RCTs that meet inclusion criteria. To date, a search of ClinicalTrials.gov identified 21 potentially eligible trials for this meta-analysis. We will request trial investigators/sponsors to contribute standardised grouped tabular outcome data. ETHICS AND DISSEMINATION: Ethics approval and informed consent will be the responsibility of the individual RCTs. Dissemination of results will occur by peer-reviewed publication. The results of our analysis can inform public health policy and clinical decision making regarding ACEi/ARB use in patients with COVID-19 on a global scale.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Tratamento Farmacológico da COVID-19 , Metanálise como Assunto , Humanos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema Renina-Angiotensina , Projetos de Pesquisa
8.
Exp Dermatol ; 29(9): 891-901, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697884

RESUMO

Since its first description around the year 2000, the local renin-angiotensin system (RAS) in skin has been subject of an increasing number of studies with many additions over the last two to three years. A focus of research has been investigations on the role of cutaneous angiotensin receptors and locally synthesised angiotensin II in wound healing, in dermatoses associated with skin fibrosis and in melanoma. This review will provide an introduction into the RAS with emphasis on information relevant for the cutaneous RAS. It will discuss the role of the RAS in skin physiology, followed by a detailed review of the existing literature addressing the role of local angiotensin II and angiotensin AT1 and AT2 receptors in wound healing and in various skin diseases such as hypertrophic scars/keloids, scleroderma, dystrophic epidermolysis bullosa, Dupuytren's disease, squamous cell carcinoma, melanoma and psoriasis. In a final section, the potential relevance of drugs, which interfere with the RAS, for future therapy of dermatological disorders is discussed. Collectively, research about the RAS in skin can currently be described as an area, which has gained increasing attention by basic researchers, thus resulting in a multitude of preclinical studies pointing to the potential relevance of components of the RAS as drug targets in dermatological diseases. With a few small clinical studies already performed successfully for indications such as hypertrophic scars and keloids, it can be said that the skin RAS is now in the critical phase of translation from preclinical evidence to clinical use.


Assuntos
Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Dermatopatias/metabolismo , Pele/metabolismo , Cicatrização , Animais , Humanos
9.
Exp Dermatol ; 29(9): 902-909, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32678966

RESUMO

Hypertrophic scar and keloid are two types of fibroproliferative conditions that result from excessive extracellular matrix production. The underlying pathological mechanism is not entirely clear. Activation of the renin-angiotensin system (RAS) is associated with fibrosis in various organs. RAS components including angiotensin II (Ang II), angiotensin AT1 and AT2 receptors, and angiotensin-converting enzyme (ACE) are expressed in the skin and act independently from the plasma RAS. AT1 receptors, which are usually the dominating receptor subtype, promote fibrosis and scar formation, while AT2 receptors inhibit the aforementioned AT1 receptor-coupled effects. Elevated angiotensin II (Ang II) levels acting on the AT1 receptor contribute to skin scar formation through increased expression of inflammatory factors such as interleukin-6 (IL-6), angiogenic factors such as vascular endothelial growth factor (VEGF) and fibrinogenic factors such as transforming growth factor-ß1 (TGF-ß1) and connective tissue growth factor (CTGF), while at the same time suppressing the anti-fibrotic tissue inhibitors of matrix metalloproteinase (TIMPs). First, small clinical trials have provided evidence that inhibition of the ACE/Ang II/ AT1 receptor axis may be effective in the treatment of hypertrophic scars/keloids. This review provides a detailed overview of the current literature on the RAS in skin, wound healing and scar formation and discusses the translational potential of targeting this hormonal system for treatment and prevention of hypertrophic scars and keloids.


Assuntos
Cicatriz Hipertrófica/etiologia , Queloide/etiologia , Sistema Renina-Angiotensina , Pele/metabolismo , Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Animais , Cicatriz Hipertrófica/tratamento farmacológico , Fibrose , Humanos , Queloide/tratamento farmacológico , Pele/patologia , Cicatrização
10.
Mult Scler ; 26(10): 1187-1196, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287367

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing inflammatory central nervous system (CNS) disease for which there is no cure. Immunoglobulin G autoantibodies specific for the water channel aquaporin-4 are a serum biomarker, believed to induce complement-dependent astrocyte damage with secondary demyelination. OBJECTIVE: To investigate the effect of angiotensin AT2 receptor (AT2R) stimulation on NMOSD-like pathology and its underlying mechanism. METHODS: NMOSD-like pathology was induced in mice by intracerebral injection of immunoglobulin-G isolated from NMOSD patient serum, with complement. This mouse model produces the characteristic histological features of NMOSD. A specific AT2R agonist, Compound 21 (C21), was given intracerebrally at day 0 and by intrathecal injection at day 2. RESULTS: Loss of aquaporin-4 and glial fibrillary acidic protein was attenuated by treatment with C21. Administration of C21 induced mRNA for interleukin-10 in the brain. NMOSD-like pathology was exacerbated in interleukin-10-deficient mice, suggesting a protective role. C21 treatment did not attenuate NMOSD-like pathology in interleukin-10-deficient mice, indicating that the protective effect of AT2R stimulation was dependent on interleukin-10. CONCLUSION: Our findings identify AT2R as a novel potential therapeutic target for the treatment of NMOSD. Interleukin-10 signaling is an essential part of the protective mechanism counteracting NMOSD pathology.


Assuntos
Neuromielite Óptica , Animais , Aquaporina 4/genética , Autoanticorpos , Humanos , Interleucina-10 , Camundongos , Recidiva Local de Neoplasia , Neuromielite Óptica/tratamento farmacológico , Receptor Tipo 2 de Angiotensina
11.
Acta Physiol (Oxf) ; 227(1): e13280, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30957953

RESUMO

The angiotensin AT2 -receptor is a main receptor of the protective arm of the renin-angiotensin system. Understanding of this unconventional G-protein coupled receptor has significantly advanced during the past decade, largely because of the availability of a selective non-peptide AT2 -receptor agonist, which allowed the conduct of a multitude of studies in animal disease models. This article reviews such preclinical studies that in their entirety provide strong evidence for an anti-fibrotic effect mediated by activation of the AT2 -receptor. Prevention of the development of fibrosis by AT2 -receptor stimulation has been demonstrated in lungs, heart, blood vessels, kidney, pancreas and skin. In lungs, AT2 -receptor stimulation was even able to reverse existing fibrosis. The article further discusses intracellular signalling mechanisms mediating the AT2 -receptor-coupled anti-fibrotic effect, including activation of phosphatases and subsequent interference with pro-fibrotic signalling pathways, induction of matrix-metalloproteinases and hetero-dimerization with the AT1 -receptor, the TGF-ßRII-receptor or the RXFP1-receptor for relaxin. Knowledge of the anti-fibrotic effects of the AT2 -receptor is of particular relevance because drugs targeting this receptor have entered clinical development for indications involving fibrotic diseases.


Assuntos
Fibrose/fisiopatologia , Cardiopatias/prevenção & controle , Nefropatias/prevenção & controle , Receptor Tipo 2 de Angiotensina/agonistas , Animais , Fibrose/induzido quimicamente , Fibrose/prevenção & controle , Humanos
12.
Am J Physiol Heart Circ Physiol ; 316(5): H958-H970, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707614

RESUMO

Thirty years ago, a novel axis of the renin-angiotensin system (RAS) was unveiled by the discovery of angiotensin-(1-7) [ANG-(1-7)] generation in vivo. Later, angiotensin-converting enzyme 2 (ACE2) was shown to be the main mediator of this reaction, and Mas was found to be the receptor for the heptapeptide. The functional analysis of this novel axis of the RAS that followed its discovery revealed numerous protective actions in particular for cardiovascular diseases. In parallel, similar protective actions were also described for one of the two receptors of ANG II, the ANG II type 2 receptor (AT2R), in contrast to the other, the ANG II type 1 receptor (AT1R), which mediates deleterious actions of this peptide, e.g., in the setting of cardiovascular disease. Very recently, another branch of the RAS was discovered, based on angiotensin peptides in which the amino-terminal aspartate was replaced by alanine, the alatensins. Ala-ANG-(1-7) or alamandine was shown to interact with Mas-related G protein-coupled receptor D, and the first functional data indicated that this peptide also exerts protective effects in the cardiovascular system. This review summarizes the presentations given at the International Union of Physiological Sciences Congress in Rio de Janeiro, Brazil, in 2017, during the symposium entitled "The Renin-Angiotensin System: Going Beyond the Classical Paradigms," in which the signaling and physiological actions of ANG-(1-7), ACE2, AT2R, and alatensins were reported (with a focus on noncentral nervous system-related tissues) and the therapeutic opportunities based on these findings were discussed.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Congressos como Assunto , Humanos , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Clin Sci (Lond) ; 132(7): 777-790, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29540539

RESUMO

The Angiotensin II type 2 receptor (AT2R) promotes vasodilation by nitric oxide (NO) release from endothelial cells. However, the mechanisms underlying the AT2R-induced stimulation of endothelial NO synthase (eNOS) is still not completely understood. Therefore, we investigated whether in addition to the known AT2R-mediated phosphorylation of eNOS at Ser1177, activation of phosphatases and dephosphorylation of eNOS at Tyr657 and Thr495 are also involved. Human aortic endothelial cells (HAEC) were stimulated with the AT2R-agonist Compound 21 (C21) (1 µM) in the presence or absence of either PD123319 (10 µM; AT2R antagonist), l-NG-Nitroarginine methyl ester (l-NAME) (10 µM; eNOS inhibitor), MK-2206 (100 nM; protein kinase B (Akt) inhibitor) sodium fluoride (NaF) (1 nM; serine/threonine phosphatase inhibitor) or sodium orthovanadate (Na3VO4) (10 nM; tyrosine phosphatase inhibitor). NO release was estimated by quantifying 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. The phosphorylation status of activating (eNOS-Ser1177) or inhibitory eNOS residues (eNOS-Tyr657, eNOS-Thr495) was determined by Western blotting. Phosphorylation of Akt at Ser473 was measured to estimate Akt activity. AT2R stimulation significantly increased NO release from HAEC, which was blocked by PD123319, l-NAME and both phosphatase inhibitors. Intracellular calcium transients were not changed by C21. AT2R stimulation resulted in phosphorylation of eNOS-Ser1177 and dephosphorylation of eNOS-Tyr657 and eNOS-Thr495 Phosphorylation at eNOS-Ser1177 was prevented by inhibition of Akt with MK-2206. From these data, we conclude that AT2R stimulation in human endothelial cells increases eNOS activity through phosphorylation of activating eNOS residues (eNOS-Ser1177) by Akt, and through dephosphorylation of inactivating eNOS residues (eNOS-Tyr657, eNOS-Thr495) by serine/threonine and tyrosine phosphatases, thus increasing NO release.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Células Cultivadas , Ativação Enzimática , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Sulfonamidas , Tiofenos
14.
Clin Sci (Lond) ; 132(5): 581-593, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29500223

RESUMO

Significant neuroprotective effects of angiotensin II type 2 (AT2) receptor (AT2 receptor) agonists in ischemic stroke have been previously demonstrated in multiple studies. However, the routes of agonist application used in these pre-clinical studies, direct intracerebroventricular (ICV) and systemic administration, are unsuitable for translation into humans; in the latter case because AT2 receptor agonists are blood-brain barrier (BBB) impermeable. To circumvent this problem, in the current study we utilized the nose-to-brain (N2B) route of administration to bypass the BBB and deliver the selective AT2 receptor agonist Compound 21 (C21) to naïve rats or rats that had undergone endothelin 1 (ET-1)-induced ischemic stroke. The results obtained from the present study indicated that C21 applied N2B entered the cerebral cortex and striatum within 30 min in amounts that are therapeutically relevant (8.4-9 nM), regardless of whether BBB was intact or disintegrated. C21 was first applied N2B at 1.5 h after stroke indeed provided neuroprotection, as evidenced by a highly significant, 57% reduction in cerebral infarct size and significant improvements in Bederson and Garcia neurological scores. N2B-administered C21 did not affect blood pressure or heart rate. Thus, these data provide proof-of-principle for the idea that N2B application of an AT2 receptor agonist can exert neuroprotective actions when administered following ischemic stroke. Since N2B delivery of other agents has been shown to be effective in certain human central nervous system diseases, the N2B application of AT2 receptor agonists may become a viable mode of delivering these neuroprotective agents for human ischemic stroke patients.


Assuntos
Encéfalo/metabolismo , Mucosa Nasal/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Acidente Vascular Cerebral/prevenção & controle , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Animais , Isquemia Encefálica/complicações , Infarto Cerebral/prevenção & controle , Vias de Administração de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Receptor Tipo 2 de Angiotensina/metabolismo , Acidente Vascular Cerebral/etiologia , Sulfonamidas/administração & dosagem , Sulfonamidas/sangue , Tiofenos/administração & dosagem , Tiofenos/sangue
15.
Hypertension ; 70(4): 831-838, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28827476

RESUMO

The actions of angiotensin II type 2 receptor (AT2R) and the receptor Mas (MasR) are complex but show similar pronatriuretic function; particularly, AT2R expression and natriuretic function are enhanced in obese/diabetic rat kidney. In light of some reports suggesting a potential positive interaction between these receptors, we tested hypothesis that renal AT2R and MasR physically interact and are interdependent to stimulate cell signaling and promote natriuresis in obese rats. We found that infusion of AT2R agonist C21 in obese Zucker rats (OZR) increased urine flow and urinary Na excretion which were attenuated by simultaneous infusion of the AT2R antagonist PD123319 or the MasR antagonist A-779. Similarly, infusion of MasR agonist Ang-(1-7) in OZR increased urine flow and urinary Na excretion, which were attenuated by simultaneous infusion of A-779 or PD123319. Experiment in isolated renal proximal tubules of OZR revealed that both the agonists C21 and Ang-(1-7) stimulated NO which was blocked by either of the receptor antagonists. Dual labeling of AT2R and MasR in OZR kidney sections and human proximal tubule epithelial cells showed that AT2R and MasR are colocalized. The AT2R also coimmunoprecipitated with MasR in cortical homogenate of OZR. Immunoblotting of cortical homogenate cross-linked with zero-length oxidative (sulfhydryl groups) cross-linker cupric-phenanthroline revealed a shift of AT2R and MasR bands upward with overlapping migration for their complexes which were sensitive to the reducing ß-mercaptoethanol, suggesting involvement of -SH groups in cross-linking. Collectively, the study reveals that AT2R and MasR are colocalized and functionally interdependent in terms of stimulating NO and promoting diuretic/natriuretic response.


Assuntos
Pressão Sanguínea , Rim , Natriurese , Óxido Nítrico/metabolismo , Obesidade , Proto-Oncogene Mas , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/agonistas , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Imidazóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/fisiopatologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/metabolismo , Natriurese/efeitos dos fármacos , Natriurese/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Proto-Oncogene Mas/metabolismo , Piridinas/farmacologia , Ratos , Ratos Zucker , Vasoconstritores/farmacologia
16.
Hypertension ; 69(6): 1128-1135, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28461604

RESUMO

The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other.


Assuntos
Imidazóis/farmacologia , Piridinas/farmacologia , Receptor Cross-Talk/fisiologia , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Análise de Variância , Animais , Astrócitos/metabolismo , Células Cultivadas , Fluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise Espectral/métodos , Transfecção
17.
Drugs ; 76(1): 1-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26631237

RESUMO

Cardiovascular and metabolic disorders, such as hypertension, insulin resistance, dyslipidemia or obesity are linked with chronic low-grade inflammation and dysregulation of the renin-angiotensin system (RAS). Consequently, RAS inhibition by ACE inhibitors or angiotensin AT1 receptor (AT1R) blockers is the evidence-based standard for cardiovascular risk reduction in high-risk patients, including diabetics with albuminuria. In addition, RAS inhibition reduces the new onset of diabetes mellitus. Yet, the high and increasing prevalence of metabolic disorders, and the high residual risk even in properly treated patients, calls for additional means of pharmacological intervention. In the past decade, the stimulation of the angiotensin AT2 receptor (AT2R) has been shown to reduce inflammation, improve cardiac and vascular remodeling, enhance insulin sensitivity and increase adiponectin production. Therefore, a concept of dual AT1R/AT2R modulation emerges as a putative means for risk reduction in cardio-metabolic diseases. The approach employing simultaneous RAS blockade (AT1R) and RAS stimulation (AT2R) is distinct from previous attempts of double intervention in the RAS by dual blockade. Dual blockade abolishes the AT1R-linked RAS almost completely with subsequent risk of hypotension and hypotension-related events, i.e. syncope or renal dysfunction. Such complications might be especially prominent in patients with renal impairment or patients with isolated systolic hypertension and normal-to-low diastolic blood pressure values. In contrast to dual RAS blockade, the add-on of AT2R stimulation does not exert significant blood pressure effects, but it may complement and enhance the anti-inflammatory and antifibrotic/de-stiffening effects of the AT1R blockade and improve the metabolic profile. Further studies will have to investigate these putative effects in particular for settings in which blood pressure reduction is not primarily desired.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Receptor Tipo 2 de Angiotensina/agonistas , Sistema Renina-Angiotensina/efeitos dos fármacos , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/fisiopatologia , Quimioterapia Combinada , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Doenças Metabólicas/complicações , Doenças Metabólicas/fisiopatologia
18.
Curr Opin Pharmacol ; 21: 115-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25677800

RESUMO

In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral. However, stimulation of AT2R locally within the brain or the kidney apparently elicits a systemic blood pressure lowering effect. A systemic effect of AT2R stimulation on blood pressure can also be achieved, when the prevailing effect of continuous background AT1R-stimulation is attenuated by low-dose AT1R blockade. Despite a lack of effect on blood pressure, AT2R stimulation still protects from hypertensive end-organ damage. Current data and evidence therefore suggest that AT2R agonists will not be suitable as future anti-hypertensive drugs, but that they may well be useful for end-organ protection in combination with established anti-hypertensives.


Assuntos
Pressão Sanguínea/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Encéfalo/patologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Rim/patologia , Receptor Tipo 2 de Angiotensina/agonistas
19.
Hypertension ; 63(3): e60-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379181

RESUMO

Left ventricular (LV) remodeling is the main reason for the development of progressive cardiac dysfunction after myocardial infarction (MI). This study investigated whether stimulation of the angiotensin type 2 receptor is able to ameliorate post-MI cardiac remodeling and what the underlying mechanisms may be. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the angiotensin type 2 receptor agonist compound 21 (0.03 mg/kg) was started 6 hours post-MI and continued for 6 weeks. Hemodynamic parameters were measured by echocardiography and intracardiac catheter. Effects on proteolysis were studied in heart tissue and primary cardiac fibroblasts. Compound 21 significantly improved systolic and diastolic functions, resulting in improved ejection fraction (71.2±4.7% versus 53.4±7.0%; P<0.001), fractional shortening (P<0.05), LV internal dimension in systole (P<0.05), LV end-diastolic pressure (16.9±1.2 versus 22.1±1.4 mm Hg; P<0.05), ratio of early (E) to late (A) ventricular filling velocities, and maximum and minimum rate of LV pressure rise (P<0.05). Compound 21 improved arterial stiffness parameters and reduced collagen content in peri-infarct myocardium. Tissue inhibitor of matrix metalloproteinase 1 was strongly upregulated, whereas matrix metalloproteinases 2 and 9 and transforming growth factor ß1 were diminished in LV of treated animals. In cardiac fibroblasts, compound 21 initially induced tissue inhibitor of matrix metalloproteinase 1 expression followed by attenuated matrix metalloproteinase 9 and transforming growth factor ß1 secretion. In conclusion, angiotensin type 2 receptor stimulation improves cardiac function and prevents cardiac remodeling in the late stage after MI, suggesting that angiotensin type 2 receptor agonists may be considered a future pharmacological approach for the improvement of post-MI cardiac dysfunction.


Assuntos
Regulação da Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Receptor Tipo 2 de Angiotensina/agonistas , Fator de Crescimento Transformador beta1/genética , Disfunção Ventricular Esquerda/genética , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , RNA/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Angiotensina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular
20.
Curr Hypertens Rep ; 16(2): 416, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414230

RESUMO

The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans with a variety of clinical indications.


Assuntos
Hipertensão/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Sistema Renina-Angiotensina/genética , Animais , Modelos Animais de Doenças , Humanos , Hipertensão/genética , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA