Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511204

RESUMO

Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.


Assuntos
Casco e Garras , Células-Tronco Mesenquimais , Animais , Cavalos , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Citocinas/metabolismo
2.
Materials (Basel) ; 15(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683288

RESUMO

Osteoporosis is characterized by the reduction of bone mineral density and the weakness of the bone strength leading to fractures. Searching for new compounds that stimulate bone activity and their ability to reconstruct seems to be a promising tool in osteoporosis treatment. Here, we performed analyses comparing the impact of polyrhodanine (PRHD) and its derivatives on the viability (anti-proliferative tests), morphology and mitochondrial network (confocal microscopy) towards pre-osteoblasts (MC3T3-E1 cell line) and osteoclasts (4B12 cell line). Moreover, we assessed the expression of genes associated with the apoptosis, inflammation and osteogenic differentiation by qPCR technique. Our results clearly demonstrated that PRHD and its modification at ratio 10/90 significantly improves the pre-osteoblast's proliferative abilities, while reducing osteoclast function. The observed effects were strongly correlated with the cytoskeleton and mitochondrial network development and arrangement. Additionally, the expression profile of genes revealed enhanced apoptosis of osteoclasts in the case of PRHD and its modification at ratio 10/90. Moreover, in this case we also observed strong anti-inflammatory properties demonstrated by decreased expression of Il1b, Tnfa and Tgfb in pre-osteoblasts and osteoclasts. On the other hand, enhanced expression of the markers associated with bone remodeling, namely, osteopontin (OPN), osteocalcin (OCL) and alkaline phosphatase (ALP), seem to confirm the role of PRHD@MnFe2O4 in the promotion of differentiation of pre-osteoblasts through the ALP-OPN-OCL axis. Based on these observations, PRHD@MnFe2O4 could be a potential agent in osteoporosis treatment in future, however, further studies are still required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA