RESUMO
This study uses molecular dynamics and barrier searching methods to investigate the diffusion and clustering of helium in plutonium dioxide. Such fundamental understanding of helium behaviour is required because radiogenic helium generated from the alpha decay of Pu nuclei can accumulate over time and storage of spent nuclear fuel needs to be safe and secure. The results show that in perfect PuO2, interstitial He is not mobile over nanosecond time scales at temperatures below 1500 K with the lowest diffusion barrier being 2.4 eV. Above this temperature O vacancies can form and diffusion increases. The He diffusion barrier drops to 0.6 eV when oxygen vacancies are present. High temperature simulations show that the key He diffusion mechanism is oxygen vacancy assisted inter-site hopping rather than the direct path between adjacent interstitial sites. Unlike oxygen vacancies, plutonium vacancies act as helium traps. However, isolated substitutional He at Pu sites can be easily ejected through displacement by neighbouring interstitial Pu atoms. High temperature MD simulations show that helium can diffuse into clusters with the majority of helium clusters which form over nanosecond time scales having a He : vacancy ratio below 1 : 1. Further static calculations show that a â¼3.5 : 1 He : vacancy ratio is the largest possible for an energetically stable helium cluster. Schottky defects act as seed points for He cluster growth and a high local concentrations of He can create such defects which then pin the growing He cluster.
RESUMO
The high alpha-activity of plutonium dioxide (PuO2) results in significant ingrowth of radiogenic helium (He) in the aged material. To safely store/dispose PuO2 or use in applications such as space exploration, the impact of He accumulation needs to be understood. In this work, defect energies obtained using a density functional theory (DFT) + U + D3 scheme are used in a point defect model constructed for PuO2 to predict the method of He incorporation within the PuO2 lattice. The simulations predict that the preferred incorporation site for He in PuO2 is a plutonium vacancy, however, the point defect model indicates that helium will be accommodated as an interstitial irrespective of He concentration and across a wide stoichiometric range. By considering the charge imbalance that arises due to incorporation of Am3+ ions it is shown that He accommodation in oxygen vacancy sites will dominate in PuO2-x as the material ages.
RESUMO
The ß decay of 241Pu to 241Am results in a significant ingrowth of Am during the interim storage of PuO2. Consequently, the safe storage of the large stockpiles of separated Pu requires an understanding of how this ingrowth affects the chemistry of PuO2. This work combines density functional theory (DFT) defect energies and empirical potential calculations of vibrational entropies to create a point defect model to predict how the defect chemistry of PuO2 evolves due to the incorporation of Am. The model predicts that Am occupies Pu sites in (Pu,Am)O2±x in either the +III or +IV oxidation state. High temperatures, low oxygen-to-metal (O/M) ratios, or low Am concentrations favor Am in the +III oxidation state. Am (+III) exists in (Pu,Am)O2±x as the negatively charged (AmPu 1-) defect, requiring charge compensation from holes in the valence band, thereby increasing the conductivity of the material compared to Am-free PuO2. Oxygen vacancies take over as the charge compensation mechanism at low O/M ratios. In (Pu,Am)O2±x , hypo- and (negligible) hyperstoichiometry is found to be provided by the doubly charged oxygen vacancy (VO 2+) and singly charged oxygen interstitial (Oi 1-), respectively.
RESUMO
An increased knowledge of the chemistry of PuO2 is imperative for the design of procedures to store, dispose, or make use of PuO2. In this work, point defect concentrations in PuO2 are determined by combining density functional theory (DFT) defect energies and empirical potential calculations of vibrational entropies. The obtained defect concentrations are expressed as a function of temperature and oxygen partial pressure and used to calculate non-stoichiometry in PuO2±x. The results show that the defect chemistry of PuO2 is dominated by oxygen vacancies and interstitials. Hypo-stoichiometric PuO2-x is accommodated by both the uncharged oxygen vacancy and positively charged oxygen vacancy at small values of x, with increasingly dominant with increasing x. The negatively charged oxygen interstitial (O2-i) is found to accommodate hyper-stoichiometry (PuO2+x), but reluctance to form hyper-stoichiometric PuO2+x is observed, with oxygen interstitials present only in very low concentrations irrespective of conditions. The small degree of hyper-stoichiometry found is favoured by low temperatures.
RESUMO
Over 80 heat treatment experiments have been made on samples of chloride-contaminated plutonium dioxide retrieved from two packages in storage at Sellafield. These packages dated from 1974 and 1980 and were produced in a batch process by conversion of plutonium oxalate in a furnace at around 550 °C. The storage package contained a poly(vinyl chloride) (PVC) bag between the screw top inner and outer metal cans. Degradation of the PVC has led to adsorption of hydrogen chloride together with other atmospheric gases onto the PuO2 surface. Analysis by caustic leaching and ion chromatography gave chloride contents of â¼2000 to >5000 ppm Cl (i.e., µgCl g-1 of the original sample). Although there are some subtle differences, in general, there is surprisingly good agreement in results from heat treatment experiments for all the samples from both cans. Mass loss on heating (LOH) plateaus at nearly 3 wt % above 700 °C, although samples that were long stored under an air atmosphere or preexposed to 95% relative humidity atmospheres, gave higher LOH up to â¼4 wt %. The majority of the mass loss is due to adsorbed water and other atmospheric gases rather than chloride. Heating volatilizes chloride only above â¼400 °C implying that simple physisorption of HCl is not the main cause of contamination. Interestingly, above 700 °C, >100% of the initial leachable chloride can be volatilized. Surface (leachable) chloride decreases quickly with heat treatment temperatures up to â¼600 °C but only slowly above this temperature. Storage in air atmosphere post-heat treatment apparently leads to a reequilibration as leachable chloride increases. The presence of a "nonleachable" form of chloride was thus inferred and subsequently confirmed in PuO2 samples (pre- and post-heat treatment) that were fully dissolved and analyzed for the total chloride inventory. Reheating samples in either air or argon at temperatures up to the first heat treatment temperature did not volatilize significant amounts of additional chloride. With regard to a thermal stabilization process, heat treatment in flowing air at 800 °C with cooling and packaging under dry argon appears optimal, particularly, if thinner powder beds can be maintained. From electron microscopy, heat treatment appeared to have the most effect on degrading the square platelet particles compared to those with the trapezoidal morphology.
RESUMO
Developmental student support has a focus on developing the whole person, not only academic and clinical competence. The positive and proactive developmental approach is in marked contrast to the deficit and reactive approach to student support which only targets identified students who are considered to be "at risk". The medical school is a nexus for personal development, combining the personal identity formation journey of early adulthood with the variety of new experiences in medical school. Important aspects of developmental student support are the development of resilience and ensuring reasonable adjustments for students with learning difficulties and disabilities. Careers guidance is an essential aspect of developmental student support, including students with doubts about a career in medicine and who are leaving because of poor performance. Developmental student support requires an organizational culture in which student support is considered as the responsibility of everyone, with further support from named personal tutors.
Assuntos
Educação de Graduação em Medicina , Desenvolvimento de Programas , Apoio Social , Estudantes de Medicina/psicologia , Adaptação Psicológica , Adolescente , Educação de Graduação em Medicina/normas , Humanos , Aprendizagem , Mentores , Modelos Teóricos , Cultura Organizacional , Resiliência Psicológica , Reino Unido , Orientação Vocacional , Adulto JovemRESUMO
The measured redox potential of an actinide at an electrode surface involves the transfer of a single electron from the electrode surface on to the actinide center. Before electron transfer takes place, the complexing ligands and molecules of solvation need to become structurally arranged such that the electron transfer is at its most favorable. Following the electron transfer, there is further rearrangement to obtain the minimum energy structure for the reduced state. As such, there are three parts to the total energy cycle required to take the complex from its ground state oxidized form to its ground state reduced form. The first part of the energy comes from the structural rearrangement and solvation energies of the actinide species before the electron transfer or charge transfer process; the second part, the energy of the electron transfer; the third part, the energy required to reorganize the ligands and molecules of solvation around the reduced species. The time resolution of electrochemical techniques such as cyclic voltammetry is inadequate to determine to what extent bond and solvation rearrangement occurs before or after electron transfer; only for a couple to be classed as reversible is it fast in terms of the experimental time. Consequently, the partitioning of the energy theoretically is of importance to obtain good experimental agreement. Here we investigate the magnitude of the instantaneous charge transfer through calculating the fast one electron reduction energies of AnO2(H2O)n(2+), where An = U, Np, and Pu, for n = 4-6, in solution without inclusion of the structural optimization energy of the reduced form. These calculations have been performed using a number of DFT functionals, including the recently developed functionals of Zhao and Truhlar. The results obtained for calculated electron affinities in the aqueous phase for the AnO2(H2O)5(2+/+) couples are within 0.04 V of accepted experimental redox potentials, nearly an order of magnitude improvement on previous calculated standard potentials E(0) values, obtained using both DFT and high level multireference approaches.
Assuntos
Elementos da Série Actinoide/química , Teoria Quântica , Água/química , Eletrodos , Oxirredução , Propriedades de SuperfícieRESUMO
BACKGROUND: Popliteal artery injury can occur in up to one-third of patients with knee dislocation. Delay in the diagnosis of popliteal artery injury is the leading cause of amputation in this limb-threatening injury. OBJECTIVES: To remind emergency physicians to consider popliteal artery injury in any pulseless lower extremity, even in cases of spontaneous reduction of the knee dislocation before evaluation by medical personnel. CASE REPORT: We present a case of popliteal artery injury and occult knee dislocation in which the diagnoses were delayed for hours by incorrectly attributing the absence of posterior tibial and dorsalis pedis pulses to compartment syndrome. The correct diagnosis was made after operative release of lower extremity compartment pressures, when it was noted that distal vascular flow remained absent. A computed tomography angiogram demonstrated complete rupture of the popliteal artery and magnetic resonance imaging performed later revealed total disruption of both cruciate ligaments, as well as posterolateral ligaments. CONCLUSION: As absence of distal pulses is a very late finding in compartment syndrome, it should be considered a result of arterial injury in patients with lower extremity trauma until proven otherwise.
Assuntos
Lesões do Ligamento Cruzado Anterior , Síndromes Compartimentais/diagnóstico , Luxação do Joelho/diagnóstico , Artéria Poplítea/lesões , Ligamento Cruzado Posterior/lesões , Adulto , Diagnóstico Diferencial , Feminino , Humanos , Pulso ArterialRESUMO
Metagenomics has accelerated the process of discovery of novel biocatalysts by enabling scientists to tap directly into the entire diversity of enzymes held within natural microbial populations. Their characterization has revealed a great deal of valuable information about enzymatic activity in terms of factors which influence their stability and activity under a wide range of conditions. Many of the biocatalysts have particular properties making them suitable for biotechnological applications. A diverse array of strategies has been developed to optimize each step of the process of generating and screening metagenomic libraries for novel biocatalysts. This review covers the diversity of metagenome-derived enzymes characterized to date, and the strategies currently being developed to optimize discovery of novel metagenomic biocatalysts.
Assuntos
Bactérias/enzimologia , Bactérias/genética , Biocatálise , Enzimas/isolamento & purificação , Genômica , Enzimas/genética , Genômica/tendências , Especificidade por Substrato/genéticaRESUMO
The inner-sphere mechanisms of the disproportionation reactions of U(V), Np(V), and Pu(V) ions have been studied using a quantum mechanical approach. The U(V) disproportionation proceeds via the formation of a dimer (a cation-cation complex) followed by two successive protonations at the axial oxygens of the donor uranyl ion. Bond lengths and spin multiplicities indicate that electron transfer occurs after the first protonation. A solvent water molecule then breaks the complex into solvated U(OH)2(2+) and UO2(2+) ions. Pu(V) behaves similarly, but Np(V) appears not to follow this path. The observations from quantum modeling are consistent with existing experimental data on actinyl(V) disproportionation reactions.
RESUMO
Metagenomics as a new field of research has been developed over the past decade to elucidate the genomes of the non-cultured microbes with the goal to better understand global microbial ecology on the one side, and on the other side it has been driven by the increasing biotechnological demands for novel enzymes and biomolecules. Since it is well accepted that the majority of all microbes has not yet been cultured, the not-yet-cultivated microbes represent a shear unlimited and intriguing resource for the development of novel genes, enzymes and chemical compounds for use in biotechnology. However, with respect to biotechnology, metagenomics faces now two major challenges. Firstly, it has to identify truly novel biocatalysts to fulfil the needs of industrial processes and green chemistry. Secondly, the already available genes and enzymes need to be implemented in production processes to further prove the value of metagenome-derived sequences.
Assuntos
Bactérias/genética , Biotecnologia , Genômica , Microbiologia do SoloRESUMO
We examine the extent to which three physical aerosol parameters--effective radius, composition (sulfate weight percent), and total volume-can be determined from infrared transmission spectra. Using simulated transmission data over the range 800-4750 cm(-1) (12.5-2.1 microm) and errors taken from the infrared spectral measurements of the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument, we use optimal estimation to recover these aerosol parameters. Uncertainties in these are examined as a function of the size, composition, and loading of stratospheric aerosols and of the spectral range employed. Using the entire spectral range above, we retrieve all three parameters with a precision to within 3% if the size distribution form is known. Additional errors result, however, from an uncertainty in the size distribution width. These are small (only a few percent) for composition and total volume but are substantial (as much as 50%) for effective radius. Errors also increase substantially when the spectral range is reduced. The retrieved effective radius can have an error of 100% or greater for typical stratospheric aerosol sizes when the spectral range is restricted to the lower wavenumber part of the range. For good accuracy in effective radius, the spectral range must extend beyond approximately 3000 cm(-1). Composition and total volume are less sensitive to the spectral range than effective radius. These simulations were carried out with modeled data to test the potential accuracy of stratospheric sulfate aerosol retrievals from the Atmospheric Chemistry Experiment (ACE). Because of the limitations that result from the use of simulated data, we have tested our retrieval algorithm using ATMOS spectra in different filter regions and present here the aerosol parameters obtained.
RESUMO
PURPOSE: The purpose of this study was to determine whether curcumin would trigger cell death in the head and neck squamous cell carcinoma (HNSCC) cell lines CCL 23, CAL 27, and UM-SCC1 in a dose-dependent fashion. EXPERIMENTAL DESIGN: HNSCC cells were treated with curcumin and assayed for in vitro growth suppression using 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide and fluorescence-activated cell sorting analyses. Expression of p16, cyclin D1, phospho-Ikappabeta, and nuclear factor-kappabeta (NF-kappabeta) were measured by Western blotting, gel shift, and immunofluorescence. RESULTS: Addition of curcumin resulted in a dose-dependent growth inhibition of all three cell lines. Curcumin treatment resulted in reduced nuclear expression of NF-kappabeta. This effect on NF-kappabeta was further reflected in the decreased expression of phospho-Ikappabeta-alpha. Whereas the expression of cyclin D1, an NF-kappabeta-activated protein, was also reduced, there was no difference in the expression of p16 at the initial times after curcumin treatment. In vivo growth studies were done using nude mice xenograft tumors. Curcumin was applied as a noninvasive topical paste to the tumors and inhibition of tumor growth was observed in xenografts from the CAL27 cell line. CONCLUSIONS: Curcumin treatment resulted in suppression of HNSCC growth both in vitro and in vivo. Our data support further investigation into the potential use for curcumin as an adjuvant or chemopreventive agent in head and neck cancer.
Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Curcumina/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Animais , Anexina A5/química , Antineoplásicos/administração & dosagem , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Separação Celular , Sobrevivência Celular , Curcumina/administração & dosagem , Ciclina D1/biossíntese , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Humanos , Proteínas I-kappa B/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Transplante de Neoplasias , Fosforilação , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologiaRESUMO
This review highlights the significant advances which have been made in prokaryotic ecology and biotechnology due to the application of metagenomic techniques. It is now possible to link processes to specific microorganisms in the environment, such as the detection of a new phototrophic process in marine bacteria, and to characterise the metabolic cooperation which takes place in mixed species biofilms. The range of prokaryote derived products available for biotechnology applications is increasing rapidly. The knowledge gained from analysis of biosynthetic pathways provides valuable information about enzymology and allows engineering of biocatalysts for specific processes. The expansion of metagenomic techniques to include alternative heterologous hosts for gene expression and the development of sophisticated assays which enable screening of thousands of clones offers the possibility to find out even more valuable information about the prokaryotic world.
Assuntos
Biotecnologia , Ecologia , Genômica , Células Procarióticas , Biotecnologia/métodos , Biotecnologia/tendências , Biologia ComputacionalRESUMO
The first structural characterization of an actinide complex with coordinated perrhenate is reported, [UO2(ReO4)2(TPPO)3] (1). In this [UO2]2+ complex two [ReO4]- anions and three TPPO (triphenylphosphine oxide) P=O donor ligands are coordinated in the equatorial plane in a cisoid arrangement. This bonding arrangement, and apparent strain observed in the equatorially bonded ligands, is attributed to the solid state packing in adjacent molecules in which hydrophobic TPPO ligands form an effective "shell" around a hydrophilic core of two UO2(ReO4)2 moieties. Solid state vibrational spectroscopy (infrared and Raman), 31P CP MAS NMR and elemental analysis are also consistent with the formula of 1. Solution state vibrational spectroscopy and 31P NMR measurements in EtOH indicate the lability of the TPPO and [ReO4]- groups. The photolytic generation of peroxide in EtOH solutions of 1 leads to the formation of trace quantities of [[(UO2)(TPPO)3]2(mu2-O2)][ReO4]2, 2, in which the coordinated [ReO4]- groups of 1 have been displaced by bridging O2(2-), derived from atmospheric O2. Finally, attempts to synthesise a [NpO2]+ analogue of have resulted only in the formation of [NpO2(TPPO)4][ReO4], 3, in which [ReO4]- acts solely as a counter anion. From these results it can be concluded that [ReO4]- will bond to [UO2]2+, but will be readily displaced by a more strongly coordinating ligand (e.g. peroxide) and will not coordinate to an actinyl cation with a lower charge, [NpO2]+, under the same reaction conditions.
RESUMO
OBJECTIVES: Family medicine is the second largest medical specialty in the United States; yet, some argue that it is struggling to define itself. This study examined mission, vision, and goal statements of family medicine residency programs as a means of gaining insight into the current definition of the discipline. METHODS: Mission statements were obtained from the Internet sites of family medicine residency programs or requested directly from programs when the mission statements were not available on the Internet. The content of the mission statements was analyzed for the presence of eight categories of family medicine values that were identified through a literature review. RESULTS: We obtained mission statements from 296 of 472 (63%) residency programs. No significant relationships were found between program characteristics and the number or types of values found in the mission statements. The following three categories of family medicine values were named in at least 70% of mission statements: (1). community issues, (2). academic mission, and (3). quality health care. In contrast, the words "family" and "research" were mentioned by only one third of programs. CONCLUSIONS: Community-oriented care was mentioned more often than family-centered care. Despite the mention of academic missions by many training programs, most lacked a stated interest in research development. Although quality health care was named in the majority of mission statements, keeping current with technology was not. These findings contribute unique information that may be useful in the evolving definition and discussion of family medicine.
Assuntos
Medicina de Família e Comunidade/educação , Medicina de Família e Comunidade/organização & administração , Internato e Residência/organização & administração , Objetivos Organizacionais , Serviços de Saúde Comunitária , Ética Profissional , Humanos , Política Organizacional , Qualidade da Assistência à Saúde , Pesquisa , Estados UnidosRESUMO
Technetium, uranium and neptunium may all occur in the environment in more than one oxidation state (IV or VII, IV or VI and IV or V respectively). The surface of mackinawite, the first-formed iron sulfide phase in anoxic conditions, can promote redox changes so a series of laboratory experiments were carried out to explore the interactions of Tc, U and Np with this mineral. The products of reaction were characterised using X-ray absorption spectroscopy. Technetium, added as TcO4(-), is reduced to oxidation state IV and forms a TcS(2)-like species. On oxidation of the mackinawite in air to form goethite, Tc remains in oxidation state IV but in an oxide, rather than a sulfide environment. At low concentrations, uranium forms uranyl surface complexes on oxidised regions of the mackinawite surface but at higher concentrations, the uranium promotes surface oxidation and forms a mixed oxidation state oxide phase. Neptunium is reduced to oxidation IV and forms a surface complex with surface sulfide ions. The remainder of the Np coordination sphere is filled with water molecules or hydroxide ions.
Assuntos
Compostos Ferrosos/química , Netúnio/análise , Netúnio/química , Tecnécio/análise , Tecnécio/química , Urânio/análise , Urânio/química , Monitoramento Ambiental , Oxirredução , Poluentes Radioativos/análise , Análise EspectralRESUMO
The separation of the individual contributions of aerosol and gases to the total attenuation of radiation through the atmosphere has been the subject of much scientific investigation since remote sensing experiments first began. We describe a new scheme to account for the spectral variation of the aerosol extinction in the inversion of transmission data from occultation measurements. Because the spectral variation of the aerosol extinction is generally unknown,the inversion problem is underdetermined and cannot be solved without a reduction in the number of unknowns in the set of equations used to describe the attenuation at each wavelength. This reduction can be accomplished by a variety of methods, including use of a priori information, the parameterization of the aerosol spectral attenuation, and the specification of the form of the aerosol size distribution. We have developed and implemented a parameterization scheme based on existing empirical and modeled information about the microphysical properties of aerosols. This scheme employs the eigenvectors from an extensive set of simulations to parameterize the aerosol extinction coefficient for incorporation into the inversion algorithm. We examine the accuracy of our method using data sets containing over 24,000 extinction spectra and compare it with that of another scheme that is currently implemented in the Polar Ozone and Aerosol Measurement (POAM) satellite experiment. In simulations using 80 wavelengths in the UV-visible-near-IR spectral range of the Stratospheric Aerosol and Gas Experiment III (SAGE) instrument, we show that, for our optimal parameterization, errors below 1% are observed in 80% of cases, whereas only approximately 20% of all cases are as accurate as this in a quadratic parameterization employing the logarithm of the wavelength.
RESUMO
Infrared transmission spectra were recorded by the Jet Propulsion Laboratory MkIV interferometer during flights aboard the NASA DC-8 aircraft as part of the Airborne Arctic Stratospheric Expedition II (AASE II) mission in the early months of 1992. In our research, we infer the properties of the stratospheric aerosols from these spectra. The instrument employs two different detectors, a HgCdTe photoconductor for 650-1850 cm(-1) and an InSb photodiode for 1850-5650 cm(-1), to simultaneously record the solar intensity throughout the mid-infrared. These spectra have been used to retrieve the concentrations of a large number of gases, including chlorofluorocarbons, NOy species, O3, and ozone-depleting gases. We demonstrate how the residual continua spectra, obtained after accounting for the absorbing gases, can be used to obtain information about the stratospheric aerosols. Infrared extinction spectra are calculated for a range of modeled aerosol size distributions and compositions with Mie theory and fitted to the measured residual spectra. By varying the size distribution parameters and sulfate weight percent, we obtain the microphysical properties of the aerosols that best fit the observations. The effective radius of the aerosols is found to be between 0.4 and 0.6 microm, consistent with that derived from a large number of instruments in this post-Pinatubo period. We demonstrate how different parts of the spectral range can be used to constrain the range of possible values of this size parameter and show how the broad spectral bandpass of the MkIV instrument presents a great advantage for retrieval ofboth aerosol size a nd composition over instruments with a more limited spectral range. The aerosol composition that provides the best fit to the measured spectra is a 70-75% sulfuric acid solution, in good agreement with that obtained from thermodynamic considerations.