Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605414

RESUMO

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Assuntos
Quitina , Quitinases , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Quitina/farmacologia , Quitina/uso terapêutico , Quitinases/uso terapêutico , Terapia de Imunossupressão , Metástase Linfática , Proteínas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
2.
Front Immunol ; 14: 1252374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928528

RESUMO

Triple-negative breast cancer (TNBC) remains difficult to treat, especially due to ineffective immune responses. Current treatments mainly aim at a cytotoxic effect, whereas (stem) cell therapies are being investigated for their immune stimulatory capacities to initiate the anti-tumor immunity. Here, a thoroughly characterized, homogenous and non-tumorigenic mixture of equine mesenchymal stem cells (eMSCs) harvested from horse peripheral blood as innovative xenogeneic immunomodulators were tested in a 4T1-based intraductal mouse model for TNBC. The eMSCs significantly reduced 4T1 progression upon systemic injection, with induction of inflammatory mediators and T-cell influx in primary tumors, already after a single dose. These xenogeneic anti-cancer effects were not restricted to MSCs as systemic treatment with alternative equine epithelial stem cells (eEpSCs) mimicked the reported disease reduction. Mechanistically, effective eMSC treatment did not rely on the spleen as systemic entrapment site, whereas CD4+ and CD8α+ T-cell infiltration and activation were critical. These results show that eMSCs and potentially also other equine stem cell types can be a valuable TNBC treatment strategy for further (pre)clinical evaluation.


Assuntos
Antineoplásicos , Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Cavalos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/uso terapêutico , Imunidade Adaptativa , Transdução de Sinais
3.
Vet Res ; 54(1): 28, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973819

RESUMO

Streptococcus uberis is a major causative agent of bovine mastitis, an inflammation of the mammary gland with substantial economic consequences. To reduce antibiotic use in animal agriculture, alternative strategies to treat or prevent mastitis are being investigated. Bovine-associated non-aureus staphylococci are proposed in that respect due to their capacity to inhibit the in vitro growth of S. uberis. We demonstrate that priming the murine mammary gland with Staphylococcus chromogenes IM reduces S. uberis growth in comparison with non-primed glands. The innate immune system is activated by increasing IL-8 and LCN2, which may explain this decreased growth.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Feminino , Animais , Bovinos , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Glândulas Mamárias Animais/microbiologia , Streptococcus , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia
4.
Oncoimmunology ; 11(1): 2103277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898705

RESUMO

Aggressive triple-negative breast cancer (TNBC) is classically treated with chemotherapy. Besides direct tumor cell killing, some chemotherapeutics such as cisplatin provide additional disease reduction through stimulation of anti-tumor immunity. The cisplatin-induced immunomodulation in TNBC was here investigated in-depth using immunocompetent intraductal mouse models. Upon primary tumor transition to invasive carcinoma, cisplatin was injected systemically and significantly reduced tumor progression. Flow cytometric immunophenotyping was corroborated by immunohistochemical analyses and revealed both differential immune cell compositions and positivity for their programmed death (PD)-1 and PD-ligand (L)1 markers across body compartments, including the primary tumor, axillary lymph nodes and spleen. As key findings, a significant decrease in immunosuppressive and a concomitant increase in anti-tumor lymphocytic cell numbers were observed in the axillary lymph nodes and spleen, highlighting their importance in cisplatin-stimulated anti-tumor immunity. These immunomodulatory effects were already established following the first cisplatin dose, indicating that early cisplatin-mediated events may determine (immuno)therapeutic outcome. Furthermore, a single cisplatin dose sufficed to alleviate anti-PD-1 resistance in a 4T1-based model, providing add-on disease reduction without toxic side effects as seen upon multiple cisplatin dosing. Overall, these results highlight cisplatin as immunotherapeutic ally in TNBC, providing durable immunostimulation, even after a single dose.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Humanos , Imunomodulação , Imunofenotipagem , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
NPJ Breast Cancer ; 7(1): 27, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731699

RESUMO

c-MET is considered a driver of cancer progression, impacting tumor growth and tumor-supporting stroma. Here, we investigated the therapeutic efficacy of OMO-1, a potent and selective c-MET inhibitor, in an immunocompetent intraductal mouse model for triple-negative breast cancer (TNBC). OMO-1 reduced non-c-MET addicted 4T1 tumor progression dose dependently as monotherapeutic and provided additional disease reduction in combination with cisplatin. At the stromal level, OMO-1 significantly reduced neutrophil infiltration in 4T1 tumors, promoted immune activation, and enhanced cisplatin-mediated reduction of tumor-associated macrophages. OMO-1 treatment also reduced 4T1 tumor hypoxia and increased expression of pericyte markers, indicative for vascular maturation. Corroborating this finding, cisplatin delivery to the 4T1 primary tumor was enhanced upon OMO-1 treatment, increasing cisplatin DNA-adduct levels and tumor cell death. Although verification in additional cell lines is warranted, our findings provide initial evidence that TNBC patients may benefit from OMO-1 treatment, even in cases of non-c-MET addicted tumors.

6.
Cancer Res ; 81(1): 27-34, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998999

RESUMO

Tumor-derived secretory factors orchestrate splenic hematopoietic and stromal cells to fuel metastasis. The spleen acts as a reservoir site for hematopoietic stem and progenitor cells, which are rapidly exploited as myeloid-derived suppressor cells at the cost of tumor-reactive lymphoid cells. Splenic erythroid progenitor cells and mesenchymal stromal cells contribute directly and indirectly to both tumor immune escape and the metastatic cascade. Animal models provide valuable mechanistic insights, but their translation to a clinical setting highlights specific challenges and open issues. In this review, we envision the exploitation of the spleen as a source for novel biomarkers and therapeutic approaches.


Assuntos
Células-Tronco Hematopoéticas/patologia , Células Supressoras Mieloides/patologia , Neoplasias/patologia , Baço/patologia , Células Estromais/patologia , Animais , Diferenciação Celular , Progressão da Doença , Células-Tronco Hematopoéticas/imunologia , Humanos , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Baço/imunologia , Células Estromais/imunologia
7.
Front Vet Sci ; 7: 576583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240956

RESUMO

Iron is an essential nutrient for bacterial growth. Therefore, bacteria have evolved chelation mechanisms to acquire iron for their survival. Enterobactin, a chelator with high affinity for ferric iron, is secreted by Escherichia coli and contributes to its improved bacterial fitness. In this preliminary study, we evaluated enterobactin deficiency both in vitro and in vivo in the context of E. coli mastitis. Firstly, we showed that expression of lipocalin 2, a protein produced by the host that is able to both bind and deplete enterobactin, is increased upon E. coli infection in the cow's mastitic mammary gland. Secondly, we demonstrated in vitro that enterobactin deficiency does not alter interleukin (IL)-8 expression in bovine mammary epithelial cells and its associated neutrophil recruitment. However, a significantly increased reactive oxygen species production of these neutrophils was observed. Thirdly, we showed there was no significant difference in bacterial in vitro growth between the enterobactin-deficient mutant and its wild-type counterpart. However, when further explored in a murine model for bovine mastitis, the enterobactin-deficient mutant vs. the wild-type strain revealed a significant reduction of the bacterial load and, consequently, a decrease in pro-inflammatory cytokines (IL-1α,-1ß,-4,-6, and-8). A reduced neutrophilic influx was also observed immunohistochemically. These findings therefore identify interference of the enterobactin iron-scavenging mechanism as a potential measure to decrease the fitness of E. coli in the mastitic mammary gland.

8.
Int J Cancer ; 145(3): 735-747, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30694564

RESUMO

Our study investigates the biochemical and functional impact of selective histone deacetylase 6 (HDAC6) inhibitors, a promising class of novel therapeutics, in several cancer models. Selective HDAC6 inhibitors (Tubathian A, Tubastatin A, Tubacin and Ricolinostat) and a non-selective HDAC inhibitor (Vorinostat) were evaluated on cancer cell lines derived from multiple tumour types in both an in vitro and in vivo setting as potential cancer therapeutics. Selective HDAC6 inhibitors resulted in α-tubulin acetylation with no impact on histone acetylation but failed to show any anti-cancer properties. Only the use of high concentrations of selective HDAC6 inhibitors resulted in co-inhibition of other HDAC enzymes and consequently in reduced growth, migratory and/or invasive activity of cancer cells in vitro as well as in vivo. The specificity of HDAC6 inhibition was confirmed using a CRISPR/Cas9 knockout cell line. Our results suggest that selective HDAC6 inhibitors may fall short as potential single agent anti-cancer drugs and prove that many previous data regarding this promising class of compounds need to be interpreted with great care due to their use in high concentrations resulting in low selectivity and potential off-target effects.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Desacetilase 6 de Histona/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Neoplasias/patologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Front Immunol ; 10: 2928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921184

RESUMO

The transition of ductal carcinoma in situ (DCIS) to invasive carcinoma (IC) in breast cancer can be faithfully reproduced by the intraductal mouse model. Envisaging to use this model for therapeutic testing, we aimed to in-depth characterize the tumor immunity associated with the differential progression of two types of intraductal tumors. More specifically, we focused on triple-negative breast cancer (TNBC) and intraductally inoculated luciferase-expressing metastatic 4T1 and locally invasive Py230 cells in lactating mammary glands of syngeneic BALB/c and C57BL/6 female mice, respectively. Although the aggressive 4T1 cells rapidly formed solid tumors, Py230 tumors eventually grew to a similar size through enhanced proliferation. Yet, ductal tumor cell breakthrough and metastasis occurred earlier in the 4T1- compared to the Py230-based intraductal model and was associated with high expression of matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) as well as an increased influx of immune cells (mainly macrophages, neutrophils and T-cells). Moreover, activated cytotoxic T-cells, B-cells and programmed death-1 (PD-1)-positive cells were more prominent in the 4T1-based intraductal model in line with enhanced pro-inflammatory cytokine and gene expression profiles. Py230-based tumors showed a more immunosuppressed anti-inflammatory profile with a high amount of regulatory T-cells, which may account for the decreased T-cell activation but increased proliferation compared to the 4T1-based tumors. Taken together, our results highlight the differential immunological aspects of aggressive metastatic and non-aggressive intraductal progression of 4T1- vs. Py230-based tumors, providing a base for future studies to explore therapy using these intraductal TNBC models.


Assuntos
Carcinoma Intraductal não Infiltrante , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Mamárias Experimentais , Proteínas de Neoplasias , Animais , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/imunologia , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia
10.
Clin Exp Metastasis ; 35(8): 715-725, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370460

RESUMO

Metastasis is key to cancer mortality. Understanding its biology is vital for developing strategies to prevent and treat metastasis. Phenotypic assays to either study metastasis or evaluate anti-metastatic drugs are widely used in preclinical research. This technical note discusses the adherence of reporting essential experimental and methodological parameters in chemotactic invasion assays in vitro and spontaneous metastasis assays in vivo. Following the analysis of 130 recent (< 5 years) research papers, several shortcomings in reporting were identified. Therefore, we strongly argue to increase experimental rigor which should result in a significant improvement with respect to reproducibility of preclinical metastasis research.


Assuntos
Modelos Animais de Doenças , Técnicas In Vitro/normas , Metástase Neoplásica , Animais , Humanos
11.
J Exp Clin Cancer Res ; 37(1): 191, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111338

RESUMO

BACKGROUND: Murine breast cancer models relying on intraductal tumor cell inoculations are attractive because they allow the study of breast cancer from early ductal carcinoma in situ to metastasis. Using a fully immunocompetent 4T1-based intraductal model for triple-negative breast cancer (TNBC) we aimed to investigate the immunological responses that guide such intraductal tumor progression, focusing on the prominent role of macrophages. METHODS: Intraductal inoculations were performed in lactating female mice with luciferase-expressing 4T1 mammary tumor cells either with or without additional RAW264.7 macrophages, mimicking basal versus increased macrophage-tumor cell interactions in the ductal environment. Imaging of 4T1-derived luminescence was used to monitor primary tumor growth and metastases. Tumor proliferation, hypoxia, disruption of the ductal architecture and tumor immune populations were determined immunohistochemically. M1- (pro-inflammatory) and M2-related (anti-inflammatory) cytokine levels were determined by Luminex assays and ELISA to investigate the activation state of the macrophage inoculum. Levels of the metastatic proteins matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) as well as of the immune-related disease biomarkers chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) were measured by ELISA to evaluate disease progression at the protein level. RESULTS: Mice intraductally co-injected with macrophages showed severe splenomegaly with faster ductal breakthrough of tumor cells and increased metastases in axillary lymph nodes and lungs. These mice showed higher M1-related cytokines in the early disease stages (at 1 to 3 weeks post-inoculation) due to the pro-inflammatory nature of RAW264.7 macrophages with increased Ly6G-positive neutrophils and decreased anti-inflammatory macrophages in the tumor microenvironment. However, upon metastasis (at 5 weeks post-inoculation), a prominent increase in M2-related cytokine levels was detected and established a tumor microenvironment with similar immune populations and cytokine responses as in mice which received only 4T1 tumor cells. The observed tumor-associated immune responses and the increased metastasis were associated with significantly induced local and systemic levels of MMP-9, VEGF, CHI3L1 and LCN2. CONCLUSIONS: The current experimental study with an innovative immunocompetent intraductal model for TNBC pinpoints towards a metastasis-supporting M1 to M2 macrophage polarization in the mammary ducts mediated by 4T1-derived signaling. We propose to explore this process as immunotherapeutic target.


Assuntos
Macrófagos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Carcinoma Ductal de Mama/imunologia , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Polaridade Celular/imunologia , Modelos Animais de Doenças , Feminino , Macrófagos/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Células RAW 264.7 , Transdução de Sinais , Esplenomegalia/imunologia , Esplenomegalia/patologia , Neoplasias de Mama Triplo Negativas/patologia
12.
Front Immunol ; 9: 1143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892291

RESUMO

Chitin is a N-acetyl-d-glucosamine biopolymer that can be recognized by chitin-binding proteins. Although mammals lack chitin synthase, they induce proteins responsible for detecting chitin in response to bacterial infections. Our aim was to investigate whether chitinase 3-like 1 (CHI3L1) has a potential role in the innate immunity of the Escherichia coli (E. coli) infected mammary gland. CHI3L1 protein was found to be secreted in whey of naturally coliform-affected quarters compared to whey samples isolated from healthy udders. In addition, gene expression of CHI3L1 was confirmed in udder tissue of cows experimentally infected with a mammary pathogenic E. coli (MPEC) strain. Despite the known anatomical differences, the bovine udders' innate immune response was mimicked by applying an experimental mouse model using MPEC or non-MPEC isolates. The effect of CHI3L1 expression in the murine mammary gland in response to coliform bacteria was investigated through the use of CHI3L1-/- mice as well as through treatment with either a pan-caspase inhibitor or chitin particles in wild-type mice. The local induction of CHI3L1 postinfection with different E. coli strains was demonstrated to be independent of both bacterial growth and mammary interleukin (IL)-8 levels. Indeed, CHI3L1 emerged as a regulator impacting on the transcytosis of Ly6G-positive cells from the interstitial space into the alveolar lumen of the mammary tissue. Furthermore, CHI3L1 was found to be upstream regulated by caspase activity and had a major downstream effect on the local pro-inflammatory cytokine profile, including IL-1beta, IL-6, and RANTES/CCL5. In conclusion, CHI3L1 was demonstrated to play a key role in the cytokine and caspase signaling during E. coli triggered inflammation of the mammary gland.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Imunomodulação , Mastite Bovina/imunologia , Mastite Bovina/microbiologia , Animais , Carga Bacteriana , Caspases/metabolismo , Bovinos , Quitina/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Expressão Gênica , Imunomodulação/genética , Mastite Bovina/genética , Mastite Bovina/patologia , Camundongos , Camundongos Knockout
13.
Front Microbiol ; 8: 2348, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234314

RESUMO

Overuse of antibiotics is a major problem in the treatment of bovine mastitis, and antibiotic treatment is frequently non-curative, thus alternative treatments are necessary. The primary aim of this study was to evaluate the efficacy of a purified phage cocktail for treatment of bovine Staphylococcus aureus mastitis in a well-defined mouse model. Candidate phages were selected based on their in vitro performance and subsequently processed into an optimally composed phage cocktail. The highest scoring phages were further tested for efficacy and resistance suppression in broth and raw milk, with and without supplemental IgG. As these in vitro results displayed significant decreases in CFU, the cocktail was purified for testing in vivo. Lactating mice were intramammarily inoculated with S. aureus N305 (ATCC 29740), a clinical bovine mastitis isolate commonly used for experimental infection of dairy cows. The phage cocktail was applied via the same route 4 h post-inoculation. Treated mammary glands were graded for gross pathological appearance and excised for bacterial and phage load quantification as well as histopathology. Observation of gross macroscopic and histopathological changes and CFU quantification demonstrated that the phage cocktail treatment significantly improved mastitis pathology and decreased bacterial counts. Phage PFU quantification indicated that the tested phage cocktail treatment was able to maintain high intramammary phage titers without spreading systemically. The in vivo results complement the in vitro data and support our concept of phage therapy as an innovative alternative or supplementation therapy to antibiotics for the treatment of bovine mastitis.

14.
Front Immunol ; 8: 833, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791009

RESUMO

Staphylococcus aureus is one of the most causative agents of mastitis and is associated with chronic udder infections. The persistency of the pathogen is believed to be the result of an insufficient triggering of local inflammatory signaling. In this study, the preclinical mastitis model was used, aiming to evaluate if lipopolysaccharide (LPS) or lipoteichoic acid (LTA) preconditioning could aid the host in more effectively clearing or at least limiting a subsequent S. aureus infection. A prototypic Gram-negative virulence factor, i.e., LPS and Gram-positive virulence factor, i.e., LTA were screened whether they were able to boost the local immune compartment. Compared to S. aureus-induced inflammation, both toxins had a remarkable high potency to efficiently induce two novel selected innate immunity biomarkers i.e., lipocalin 2 (LCN2) and chitinase 3-like 1 (CHI3L1). When combining mammary inoculation of LPS or LTA prior to a local S. aureus infection, we were able to modulate the innate immune response, reduce local bacterial loads, and induce either LCN2 or CHI3L1 at 24 h post-infection. Clodronate depletion of mammary macrophages also identified that macrophages contribute only to a limited extend to the LPS/LTA-induced immunomodulation upon S. aureus infection. Based on histological neutrophil influx evaluation, concomitant local cytokine profiles and LCN2/CHI3L1 patterns, the macrophage-independent signaling plays a major role in the LPS- or LTA-pretreated S. aureus-infected mouse mammary gland. Our results highlight the importance of a vigilant microenvironment during the innate immune response of the mammary gland and offer novel insights for new approaches concerning effective immunomodulation against a local bacterial infection.

15.
J Mammary Gland Biol Neoplasia ; 21(3-4): 113-122, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27714576

RESUMO

Breast tumorigenesis is classically studied in mice by inoculating tumor cells in the fat pad, the adipose compartment of the mammary gland. Alternatively, the mammary ducts, which constitute the luminal mammary gland compartment, also provide a suitable inoculation site to induce breast cancer in murine models. The microenvironments in these compartments influence tumor cell progression, yet this effect has not been investigated in an immunocompetent context. Here, we compared both mammary gland compartments as distinct inoculation sites, taking into account the immunological aspect by inoculating 4T1 tumor cells in immunocompetent mice. Following tumor cell inoculation in the adipose compartment of non-pretreated/naive, hormonally pretreated/naive and non-pretreated/lactating mice, the primary tumors developed similarly. However, a slower onset of primary tumor growth was found after inoculations in the luminal compartment of non-pretreated/lactating mice. Despite this difference in tumor development rate, metastasis to the liver and lungs was equally observed and was accompanied by lymphatic spreading of tumor cells and progressive splenomegaly with both inoculation types. Chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) served as innovative biomarkers for disease progression showing increased levels in primary tumors and sera of the non-pretreated/lactating inoculation groups. A slower increase in circulating CHI3L1 but not LCN2 levels, was observed after inoculations in the luminal compartment which corroborated the slower tumor development at this inoculation site. Our results highlight the critical impact of different mammary gland compartments on tumor development in syngeneic murine models and support the use of novel tumor progression biomarkers in an immune-competent environment.


Assuntos
Tecido Adiposo/patologia , Carcinogênese/patologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Lactação/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/metabolismo , Obesidade/patologia , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA