Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 627, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910254

RESUMO

Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler development.


Assuntos
Ração Animal , Galinhas , Enterococcus faecium , Streptococcus faecium ATCC 9790 , Microbioma Gastrointestinal , Jejuno , Animais , Galinhas/microbiologia , Galinhas/crescimento & desenvolvimento , Enterococcus faecium/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Jejuno/microbiologia , Dieta/veterinária , Metagenômica/métodos , Suplementos Nutricionais
2.
FEMS Microbes ; 5: xtae014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813098

RESUMO

Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake, and biofilm formation (chromosome). In total, 260 were downregulated, including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.

3.
Microbiol Spectr ; 11(4): e0006323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404183

RESUMO

The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Humanos , Cães , Animais , Infecções por Escherichia coli/microbiologia , Proteínas de Bactérias/genética , RNA Ribossômico 16S/genética , Escherichia coli/genética , beta-Lactamases/genética , Bactérias/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia
4.
mSphere ; 7(6): e0051222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36394321

RESUMO

Diet is an important determinant of the human gut microbiome. Here, we analyzed fecal metagenomes of Dutch adults following omnivorous, pescatarian, vegan, and vegetarian diets. We compared the taxonomic composition of individuals from our study with publicly available gut metagenomes from westernized and non-westernized societies. We observed that, despite long-term transition to diets rich in plant fibers (vegan or vegetarian), the microbiomes of these were typical of westernized populations, and similar in composition to omnivores. Although there were no major differences in metabolic modules, we identified differences in the species that contributed to particular functions, such as carbohydrate degradation and short-chain fatty acid metabolism. Overall, this study shows functional redundancy of the microbiomes among westernized populations, which is independent of long-term individual dietary habits. IMPORTANCE Diet is an important modulator of the human gut microbiome, which is susceptible to increased consumption of plant fibers in vegan or vegetarian lifestyles. To investigate this, we compared the gut microbiome of Dutch adults following omnivorous, pescatarian, vegan and vegetarian diets. We did not observe major differences in the gut microbiome composition and function between individuals with different dietary habits. However, we observed differences in the species that contribute to the core functions of the gut microbiome. Our study thus emphasizes the need to better understand the species-specific functional changes associated with dietary habits in the human gut microbiome.


Assuntos
Dieta Vegetariana , Microbiota , Adulto , Humanos , Dieta , Dieta Vegana , Comportamento Alimentar
5.
Sci Rep ; 12(1): 1892, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115599

RESUMO

The human gut microbiome plays a central role in health and disease. Environmental factors, such as lifestyle and diet, are known to shape the gut microbiome as well as the reservoir of resistance genes that these microbes harbour; the resistome. In this study we assessed whether long-term dietary habits within a single geographical region (the Netherlands) impact the human gut resistome. Faecal samples from Dutch omnivores, pescatarians, vegetarians and vegans were analysed by metagenomic shotgun sequencing (MSS) (n = 149) and resistome capture sequencing approach (ResCap) (n = 64). Among all diet groups, 119 and 145 unique antibiotic resistance genes (ARGs) were detected by MSS or ResCap, respectively. Five or fifteen ARGs were shared between all diet groups, based on MSS and ResCap, respectively. The total number of detected ARGs by MSS or ResCap was not significantly different between the groups. MSS also revealed that vegans have a distinct microbiome composition, compared to other diet groups. Vegans had a lower abundance of Streptococcus thermophilus and Lactococcus lactis compared to pescatarians and a lower abundance of S. thermophilus when compared to omnivores. In summary, our study showed that long-term dietary habits are not associated with a specific resistome signature.


Assuntos
Bactérias/genética , Dieta , Farmacorresistência Bacteriana/genética , Comportamento Alimentar , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Adulto , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Dieta Vegana , Dieta Vegetariana , Fezes/microbiologia , Feminino , Humanos , Masculino , Carne , Metagenoma , Metagenômica , Pessoa de Meia-Idade , Países Baixos , Valor Nutritivo , Alimentos Marinhos , Fatores de Tempo , Verduras
6.
JHEP Rep ; 3(5): 100344, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34604725

RESUMO

BACKGROUND & AIMS: The interorgan crosstalk between the liver and the intestine has been the focus of intense research. Key in this crosstalk are bile acids, which are secreted from the liver into the intestine, interact with the microbiome, and upon absorption reach back to the liver. The bile acid-activated farnesoid X receptor (Fxr) is involved in the gut-to-liver axis. However, liver-to-gut communication and the roles of bile acids and Fxr remain elusive. Herein, we aim to get a better understanding of Fxr-mediated liver-to-gut communication, particularly in colon functioning. METHODS: Fxr floxed/floxed mice were crossed with cre-expressing mice to yield Fxr ablation in the intestine (Fxr-intKO), liver (Fxr-livKO), or total body (Fxr-totKO). The effects on colonic gene expression (RNA sequencing), the microbiome (16S sequencing), and mucus barrier function by ex vivo imaging were analysed. RESULTS: Despite relatively small changes in biliary bile acid concentration and composition, more genes were differentially expressed in the colons of Fxr-livKO mice than in those of Fxr-intKO and Fxr-totKO mice (3272, 731, and 1824, respectively). The colons of Fxr-livKO showed increased expression of antimicrobial genes, Toll-like receptors, inflammasome-related genes and genes belonging to the 'Mucin-type O-glycan biosynthesis' pathway. Fxr-livKO mice have a microbiome profile favourable for the protective capacity of the mucus barrier. The thickness of the inner sterile mucus layer was increased and colitis symptoms reduced in Fxr-livKO mice. CONCLUSIONS: Targeting of FXR is at the forefront in the battle against metabolic diseases. We show that ablation of Fxr in the liver greatly impacts colonic gene expression and increased the colonic mucus barrier. Increasing the mucus barrier is of utmost importance to battle intestinal diseases such as inflammatory bowel disease, and we show that this might be done by antagonising FXR in the liver. LAY SUMMARY: This study shows that the communication of the liver to the intestine is crucial for intestinal health. Bile acids are key players in this liver-to-gut communication, and when Fxr, the master regulator of bile acid homoeostasis, is ablated in the liver, colonic gene expression is largely affected, and the protective capacity of the mucus barrier is increased.

7.
Nature ; 580(7802): 269-273, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32106218

RESUMO

Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Ilhas Genômicas/genética , Mutagênese , Mutação , Técnicas de Cocultura , Estudos de Coortes , Sequência Consenso , Dano ao DNA , Microbioma Gastrointestinal , Humanos , Organoides/citologia , Organoides/metabolismo , Organoides/microbiologia , Peptídeos/genética , Policetídeos
8.
FEMS Microbiol Lett ; 366(22)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905238

RESUMO

The Gram-positive bacterium Enterococcus faecium is becoming increasingly prevalent as a cause of hospital-acquired, antibiotic-resistant infections. A fundamental part of research into E. faecium biology relies on the ability to generate targeted mutants but this process is currently labour-intensive and time-consuming, taking 4 to 5 weeks per mutant. In this report, we describe a method relying on the high recombination rates of E. faecium and the application of the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 genome editing tool to more efficiently generate targeted mutants in the E. faecium chromosome. Using this tool and the multi-drug resistant clinical E. faecium strain E745, we generated a deletion mutant in the lacL gene, which encodes the large subunit of the E. faeciumß-galactosidase. Blue/white screening using 5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside (X-gal) could be used to distinguish between the wild-type and lacL deletion mutant. We also inserted two copies of gfp into the intrinsic E. faecium macrolide resistance gene msrC to generate stable green fluorescent cells. We conclude that CRISPR-Cas9 can be used to generate targeted genome modifications in E. faecium in 3 weeks, with limited hands-on time. This method can potentially be implemented in other Gram-positive bacteria with high intrinsic recombination rates.


Assuntos
Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Enterococcus faecium/genética , Edição de Genes/métodos , Enterococos Resistentes à Vancomicina/genética , Deleção de Genes , Testes Genéticos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA