Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375016

RESUMO

Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood-Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers.

2.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055147

RESUMO

Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg-1 AwCA) and PmCA (1748 WAU mg-1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.


Assuntos
Acetobacterium/enzimologia , Bactérias/enzimologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Acetobacterium/genética , Anaerobiose , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Estabilidade Enzimática , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
3.
Anaerobe ; 46: 96-103, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28648471

RESUMO

Hydrogen from water electrolysis is often suggested as a way of storing the excess energy from wind and solar power plants. However, unlike natural gas, hydrogen is difficult to store and distribute. One solution is to convert the hydrogen into other fuels or bulk chemicals. In this study we investigated fermentation in which homoacetogenic clostridia apply the Wood-Ljungdahl pathway to generate acetate from H2 and CO2. Acetate can be used as a bulk chemical or further transformed into biofuels. Autotrophic growth with CO2 as the sole carbon source is slow compared to heterotrophic growth, so the aim of this work was to improve continuous gas fermentation by immobilising the acetate-producing clostridia, thus preventing their wash out from the bioreactor. Two homoacetogenic bacterial strains (Acetobacterium woodii and Moorella thermoacetica) were tested for their acetate production potential, with A. woodii proving to be the better strain with maximum acetate concentration of 29.57 g l-1. Due to its stability during fermentation and good bacterial immobilisation, linen was chosen as immobilisation material for continuous fermentation. This study demonstrates the successful continuous fermentation of acetate from H2 and CO2 using A. woodii immobilised on a low-cost surface at high volumetric productivity of 1.21 ± 0.05 g acetate l-1 d-1. This has great industrial potential and future studies should focus on the scale-up of this process.


Assuntos
Acetatos/metabolismo , Acetobacterium/metabolismo , Reatores Biológicos , Fermentação , Dióxido de Carbono , Hidrogênio
4.
Mol Cell Endocrinol ; 369(1-2): 119-29, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23403053

RESUMO

FFA1 (GPR40) and GPR120 are G-protein-coupled receptors activated by long-chain fatty acids. FFA1 is expressed in pancreatic ß-cells, where it regulates glucose-dependent insulin secretion, and GPR120 has been implicated in mediating GLP-1 secretion. We show here that FFA1 co-localizes with GLP-1 in enteroendocrine cells and plays a critical role in glucose management by mediating GLP-1 secretion in vivo. Corn oil induces GLP-1 secretion in wild type mice and in GPR120-/- mice, but not in FFA1-/- mice. α-Linolenic acid, an endogenous ligand of FFA1, induces GLP-1 secretion in GLUTag cells and in primary fetal mouse intestinal cells. Synthetic partial FFA1 agonists do not stimulate GLP-1 secretion in mice, but partial and full agonists combined function cooperatively to enhance receptor activation and GLP-1 secretion both in vitro and in vivo. We conclude that allosterism at FFA1 can contribute to postprandial glucose management by stimulating insulin secretion via an extrapancreatic mechanism of action, and that GPR120 in GLP-1 secretion requires further investigation.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células CHO , Células Cultivadas , Clonagem Molecular , Cricetinae , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA